%I
%S 13,113143,51435506383,99409572523,103798521703,168478035613,
%T 209853250543,352584260443,363166596883,364924788643,392540425213,
%U 474794173933,599248664863,868426443733,921757034893,956232430243,1033160019163,1076170106563,1136259793363
%N Initial members of prime 10tuplets (p, p + 4, p + 6, p + 10, p + 16, p + 18, p + 24, p + 28, p + 30, p + 34).
%C The prime ktuples conjecture predicts the existence of infinitely many prime numbers p such that the numbers p + 4, p + 6, p + 10, p + 16, p + 18, p + 24, p + 28, p + 30, p + 34 belong all to the set of primes.
%D Richard Crandall & Carl Pomerance, Prime numbers: a computational perspective (2nd edition). SpringerVerlag, 2005, pp. 1718.
%H Giovanni Resta, <a href="/A273217/b273217.txt">Table of n, a(n) for n = 1..300</a>
%t Select[6Range[2000] + 1, Union[PrimeQ[# + {0, 4, 6, 10, 16, 18, 24, 28, 30, 34}]] == {True} &] (* _Alonso del Arte_, May 22 2016 *)
%Y Cf. A022547.
%K nonn
%O 1,1
%A _JosÃ© HernÃ¡ndez_, May 17 2016
%E a(6)a(19) from _Giovanni Resta_, May 26 2016
