login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Products of three distinct Fibonacci numbers > 1.
7

%I #8 May 29 2016 16:53:17

%S 30,48,78,80,120,126,130,195,204,208,210,312,315,330,336,340,504,510,

%T 520,534,544,546,550,816,819,825,840,864,880,884,890,1320,1326,1335,

%U 1360,1365,1398,1424,1428,1430,1440,2136,2142,2145,2160,2184,2200,2210,2262

%N Products of three distinct Fibonacci numbers > 1.

%H Giovanni Resta, <a href="/A272949/b272949.txt">Table of n, a(n) for n = 1..10000</a>

%e a(1) = 30 = 2*3*5.

%t s = {1}; nn = 60; f = Fibonacci[2 + Range[nn]]; Do[s = Union[s, Select[s*f[[i]], # <= f[[nn]] &]], {i, nn}]; s = Prepend[s, 0]; Take[s, 100] (* A160009 *)

%t isFibonacciQ[n_] := Apply[Or, Map[IntegerQ, Sqrt[{# + 4, # - 4} &[5 n^2]]]];

%t ans = Join[{{0}}, {{1}}, Table[#[[Flatten[Position[Map[Apply[Times, #] &, #], s[[n]]]][[1]]]] &[Rest[Subsets[Rest[Map[#[[1]] &, Select[Map[{#, isFibonacciQ[#]} &, Divisors[s[[n]]]], #[[2]] &]]]]]], {n, 3, 500}]]

%t Map[Length, ans] (* A272947 *)

%t Flatten[Position[Map[Length, ans], 1]] (* A272948 *)

%t Map[Apply[Times, #] &, Select[ans, Length[#] == 1 &]] (* A000045 *)

%t Map[Apply[Times, #] &, Select[ans, Length[#] == 2 &]] (* A271354 *)

%t Map[Apply[Times, #] &, Select[ans, Length[#] == 3 &]] (* A272949 *)

%t Map[Apply[Times, #] &, Select[ans, Length[#] == 4 &]] (* A272950 *)

%t (* _Peter J. C. Moses_, May 11 2016 *)

%t up=10^9; F=Fibonacci; i=3; Union[ Reap[ While[(a = F[i++]) < up, j=i; While[ (b = F[j++]*a) < up, h=j; While[ (c = F[h++]*b) < up, Sow@c ]]]][[2, 1]]] (* _Giovanni Resta_, May 14 2016 *)

%Y Cf. A000045, A160009, A272947, A271354, A273950.

%K nonn,easy

%O 1,1

%A _Clark Kimberling_, May 13 2016