login
Numbers k such that (28*10^k + 173)/3 is prime.
0

%I #20 Jul 02 2024 18:45:32

%S 0,1,2,3,9,11,13,15,17,24,37,44,48,58,65,104,393,413,1265,2292,2620,

%T 3037,3628,5159,5629,12809,18572,26875,29695,32267,34277,43621,138768,

%U 220800

%N Numbers k such that (28*10^k + 173)/3 is prime.

%C For k > 1, numbers k such that the digit 9 followed by k-2 occurrences of the digit 3 followed by the digits 91 is prime (see Example section).

%C a(35) > 3*10^5.

%H Makoto Kamada, <a href="https://stdkmd.net/nrr">Factorization of near-repdigit-related numbers</a>.

%H Makoto Kamada, <a href="https://stdkmd.net/nrr/prime/prime_difficulty.txt">Search for 93w91</a>.

%e 3 is in this sequence because (28*10^3 + 173)/3 = 9391 is prime.

%e Initial terms and associated primes:

%e a(1) = 0, 67;

%e a(2) = 1, 151;

%e a(3) = 2, 991;

%e a(4) = 3, 9391;

%e a(5) = 9, 9333333391, etc.

%t Select[Range[0, 100000], PrimeQ[(28*10^# + 173)/3] &]

%o (PARI) is(n)=ispseudoprime((28*10^n + 173)/3) \\ _Charles R Greathouse IV_, Jun 13 2017

%Y Cf. A056654, A268448, A269303, A270339, A270613, A270831, A270890, A270929, A271269.

%K nonn,more

%O 1,3

%A _Robert Price_, May 02 2016

%E a(33) from _Robert Price_, Dec 25 2019

%E a(34) from _Robert Price_, Jul 02 2024