login
A272480
Number of n-step tri-directional self-avoiding walks on the hexagonal lattice, after first step.
0
3, 7, 17, 41, 95, 223, 523, 1201, 2781, 6445, 14731, 33859, 77899, 177523, 406115, 929825, 2114387, 4821367, 11001423, 24974353, 56813401, 129315249, 293157759, 665688917, 1512325105, 3424615395
OFFSET
1,1
COMMENTS
Among the 6 possible directions only 3 are allowed, separated by 120 degrees.
We take a first step then count all the n-step walks.
This sequence generates a surprising number of primes:
* 3: 3
* 7: 7
* 17: 17
* 41: 41
95: 5 19
* 223: 223
* 523: 523
* 1201: 1201
2781: 3 3 3 103
6445: 5 1289
* 14731: 14731
33859: 7 7 691
* 77899: 77899
177523: 113 1571
406115: 5 81223
929825: 5 5 13 2861
2114387: 11 167 1151
4821367: 1229 3923
11001423: 3 3667141
* 24974353: 24974353
56813401: 19 59 59 859
129315249: 3 3 7 101 20323
293157759: 3 97719253
665688917: 59 11282863
1512325105: 5 523 578327
3424615395: 3 5 12497 18269
FORMULA
a(n) = A272265(n)/3.
CROSSREFS
Cf. A272265.
Sequence in context: A000600 A138901 A192674 * A131056 A077851 A089737
KEYWORD
nonn,walk
AUTHOR
Francois Alcover, May 05 2016
STATUS
approved