login
Asymptotic variance (normalized by n^2) of the third longest cycle in a random permutation on n symbols.
0

%I #9 Nov 29 2021 14:08:15

%S 0,0,4,4,9,3,9,2,3,1,8,1,7,9,0,8,0,4,7,4,7,9,4,4,9,2,2,0,5,7,5,6,9,9,

%T 6,9,2,6,4,9,3,1,9,7,8,4,3,0,7,7,0,7,2,4,2,0,7,5,0,5,9,2,3,9,8,0,0,3,

%U 5,0,0,7,5,4,0,9,8,6,0,4,8,4,2,8,1,9,3,8,7,5,8,6,9,5,9,3,0,1,8,0

%N Asymptotic variance (normalized by n^2) of the third longest cycle in a random permutation on n symbols.

%D Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 5.4 Golomb-Dickman Constant, p. 285.

%H Xavier Gourdon, <a href="http://algo.inria.fr/gourdon/thesis.html">Combinatoire, Algorithmique et Géométrie des Polynomes</a>, Ecole Polytechnique, Paris 1996, page 152 (in French).

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/Golomb-DickmanConstant.html">Golomb-Dickman Constant</a>

%H Wikipedia, <a href="http://en.wikipedia.org/wiki/Golomb%E2%80%93Dickman_constant">Golomb-Dickman constant</a>

%F Integral_{0..infinity} x*(1 - e^Ei(-x)*(1 - Ei(-x) + (1/2)*Ei(-x)^2)) dx - (Integral_{0..infinity} 1 - e^Ei(-x)*(1 - Ei(-x) + (1/2)*Ei(-x)^2) dx)^2, where Ei is the exponential integral.

%e 0.00449392318179080474794492205756996926493197843077072420750592398...

%t digits = 98; Ei = ExpIntegralEi; NIntegrate[x*(1 - E^Ei[-x]*(1 - Ei[-x] + (1/2)*Ei[-x]^2)), {x, 0, 100}, WorkingPrecision -> digits + 5] - NIntegrate[1 - E^Ei[-x]*(1 - Ei[-x] + (1/2)*Ei[-x]^2), {x, 0, 100}, WorkingPrecision -> digits + 5]^2 // Join[{0, 0}, RealDigits[#, 10, digits][[1]]]&

%Y Cf. A084945, A247398, A272413, A272414, A272415.

%K nonn,cons

%O 0,3

%A _Jean-François Alcover_, Apr 29 2016