%I #18 Dec 13 2019 12:53:02
%S 2971,2477,2069,1747,1511,1361,1297,1319,1427,1621,1901,2267,2719,
%T 3257,3881,4591,5387,6269,7237,8291,9431,10657,11969,13367,14851,
%U 16421,18077,19819,21647,23561,25561,27647,29819,32077,34421,39367,41969,44657,47431,50291
%N Primes of the form 43*n^2 - 537*n + 2971 in order of increasing nonnegative values of n.
%H G. C. Greubel, <a href="/A272285/b272285.txt">Table of n, a(n) for n = 1..10000</a>
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/Prime-GeneratingPolynomial.html">Prime-Generating Polynomials</a>
%e 1511 is in this sequence since 43*4^2 - 537*4 + 2971 = 688-2148+2971 = 1511 is prime.
%t n = Range[0, 100]; Select[43n^2 - 537n + 2971, PrimeQ[#] &]
%o (PARI) lista(nn) = for(n=0, nn, if(ispseudoprime(p=43*n^2 - 537*n + 2971), print1(p, ", "))); \\ _Altug Alkan_, Apr 24 2016
%Y Cf. A050268, A050267, A005846, A007641, A007635, A048988, A050265, A050266.
%Y Cf. A271980, A272030, A272074, A272075, A272118, A272159, A271143, A272284.
%K nonn,less
%O 1,1
%A _Robert Price_, Apr 24 2016