This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A271662 Convolution of nonzero pentagonal numbers (A000326) with themselves. 4

%I

%S 1,10,49,164,434,980,1974,3648,6303,10318,16159,24388,35672,50792,

%T 70652,96288,128877,169746,220381,282436,357742,448316,556370,684320,

%U 834795,1010646,1214955,1451044,1722484,2033104,2387000,2788544,3242393,3753498,4327113,4968804,5684458

%N Convolution of nonzero pentagonal numbers (A000326) with themselves.

%C More generally, the ordinary generating function for the convolution of nonzero k-gonal numbers with themselves is (1 + (k - 3)*x)^2/(1 - x)^6.

%H G. C. Greubel, <a href="/A271662/b271662.txt">Table of n, a(n) for n = 0..1000</a>

%H OEIS Wiki, <a href="http://oeis.org/wiki/Figurate_numbers">Figurate numbers</a>

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/PentagonalNumber.html">Pentagonal Number</a>

%H <a href="/index/Rec#order_06">Index entries for linear recurrences with constant coefficients</a>, signature (6,-15,20,-15,6,-1)

%F O.g.f.: (1 + 2*x)^2/(1 - x)^6.

%F E.g.f.: (120 + 1080*x + 1800*x^2 + 920*x^3 + 165*x^4 + 9*x^5)*exp(x)/120.

%F a(n) = 6*a(n-1) - 15*a(n-2) + 20*a(n-3) - 15*a(n-4) + 6*a(n-5) - a(n-6).

%F a(n) = (n + 1)*(n + 2)*(n + 3)*(9*n^2 + 21*n + 20)/120.

%F Sum_{n>=0} 1/a(n) = 1.13108002...

%t LinearRecurrence[{6, -15, 20, -15, 6, -1}, {1, 10, 49, 164, 434, 980}, 40]

%t Table[(n + 1) (n + 2) (n + 3) (9 n^2 + 21 n + 20)/120, {n, 0, 40}]

%t With[{nmax = 50}, CoefficientList[Series[(120 + 1080*x + 1800*x^2 + 920*x^3 + 165*x^4 + 9*x^5)*Exp[x]/120, {x, 0, nmax}], x]*Range[0, nmax]!] (* _G. C. Greubel_, Jun 07 2017 *)

%o (PARI) vector(40, n, n--; (n+1)*(n+2)*(n+3)*(9*n^2+21*n+20)/120) \\ _Altug Alkan_, Apr 12 2016

%o (MAGMA) /* From definition: */ P:=func<n,k | (n^2*(k-2)-n*(k-4))/2>; /*, where P(n,k) is the n-th k-gonal number, */ [&+[P(n+1-i,5)*P(i,5): i in [1..n]]: n in [1..40]]; // _Bruno Berselli_, Apr 13 2016

%o (MAGMA) [(n+1)*(n+2)*(n+3)*(9*n^2+21*n+20)/120: n in [0..40]]; // _Bruno Berselli_, Apr 13 2016

%Y Cf. A000326.

%Y Cf. similar sequences of the convolution of k-gonal numbers with themselves: A000389 (k=3, without zeros), A033455 (k=4), this sequence (k=5), A271870 (k=6).

%K nonn,easy

%O 0,2

%A _Ilya Gutkovskiy_, Apr 12 2016

%E Edited by _Bruno Berselli_, Apr 13 2016

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 22 23:18 EDT 2018. Contains 316518 sequences. (Running on oeis4.)