Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #19 Dec 07 2019 12:18:28
%S 9551,23071,107647,115259,160681,229499,259379,270701,279919,301649,
%T 321221,352543,375341,402049,411683,422621,526963,654413,667559,
%U 692647,745981,755143,761731,805523,816691,875107,968819,1069561,1117603,1143091,1182487,1199683
%N Primes p such that p and prime(p) end with the same four digits.
%C Subsequence of A232189.
%H Colin Barker, <a href="/A271046/b271046.txt">Table of n, a(n) for n = 1..50</a>
%e 23071 is in the sequence because 23071 % 10000 = 3071, prime(23071) = 263071 and 263071 % 10000 = 3071.
%t Select[Prime@ Range[10^5], Mod[#, 10000] == Mod[Prime@ #, 10000] &] (* _Michael De Vlieger_, Mar 29 2016 *)
%o (PARI) L=List(); forprime(p=2, 1000000, if(p%10000==prime(p)%10000, listput(L, p))); Vec(L)
%o (Python)
%o from sympy import isprime,prime
%o for p in range(2,10**6):
%o if(prime(p)%10000==p%10000 and isprime(p)):print(p)
%o # _Soumil Mandal_, Apr 04 2016
%Y Cf. A232189, A271043, A271044, A271045.
%K nonn,easy,base
%O 1,1
%A _Colin Barker_, Mar 29 2016