Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #15 Oct 16 2017 10:47:48
%S 1,1,4,35,457,12421,678101,69540142,13730026114,5551573311817,
%T 4379029522335786,6705866900012021577,21038900445652125741759,
%U 131183458646068931932668114,1603688863449847489871671547959,40294004792352613617780682256221711
%N Coefficient of x^n in Product_{k>=1} (1 + x^k)^(k^n).
%H Vaclav Kotesovec, <a href="/A270917/b270917.txt">Table of n, a(n) for n = 0..80</a>
%F Conjecture: limit n->infinity a(n)^(1/n^2) = exp(exp(-1)) = 1.444667861...
%p b:= proc(n, i, k) option remember; `if`(n=0, 1, `if`(i<1, 0,
%p add(b(n-i*j, i-1, k)*binomial(i^k, j), j=0..n/i)))
%p end:
%p a:= n-> b(n$3):
%p seq(a(n), n=0..20); # _Alois P. Heinz_, Oct 16 2017
%t Table[SeriesCoefficient[Product[(1+x^k)^(k^n), {k, 1, n}], {x, 0, n}], {n, 0, 20}]
%Y Cf. A252782, A255672, A270913.
%Y Main diagonal of A284992.
%K nonn
%O 0,3
%A _Vaclav Kotesovec_, Mar 25 2016