login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A270704 Even 14-gonal (or tetradecagonal) numbers. 0

%I

%S 0,14,76,186,344,550,804,1106,1456,1854,2300,2794,3336,3926,4564,5250,

%T 5984,6766,7596,8474,9400,10374,11396,12466,13584,14750,15964,17226,

%U 18536,19894,21300,22754,24256,25806,27404,29050,30744,32486,34276,36114,38000

%N Even 14-gonal (or tetradecagonal) numbers.

%C First bisection of A051866.

%C More generally, the ordinary generating function for the even k-gonal numbers with even k or for the first bisection of k-gonal numbers, is (k*x + (3*k - 8)*x^2)/(1 - x )^3.

%H OEIS Wiki, <a href="http://oeis.org/wiki/Figurate_numbers">Figurate numbers</a>

%H <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (3,-3,1)

%F G.f.: 2*x*(7 + 17*x)/(1 - x)^3.

%F E.g.f.: 2*exp(x)*x*(7 + 12*x).

%F a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3).

%F a(n) = 2*n*(12*n - 5).

%F a(n) = A005843(n)*A017605(n-1).

%F Sum_{n>=1} 1/a(n) = (Pi - sqrt(3)*Pi + sqrt(3)*log(27) + sqrt(3)*log(64) + log(1728) + 6*log(sqrt(3)-1) + 2*sqrt(3)*log(sqrt(3)-1) - 6*log(sqrt(3)+1) - 2*sqrt(3)*log(sqrt(3)+1))/(20 + 20*sqrt(3)) = 0.102542837854…

%t LinearRecurrence[{3, -3, 1}, {0, 14, 76}, 41]

%t Table[2 n (12 n - 5), {n, 0, 40}]

%t PolygonalNumber[14,Range[0,80,2]] (* Requires Mathematica version 10 or later *) (* _Harvey P. Dale_, Mar 12 2017 *)

%o (PARI) concat(0, Vec(2*x*(7 + 17*x)/(1 - x)^3 + O(x^60))) \\ _Michel Marcus_, Mar 22 2016

%Y Cf. similar sequences of the even k-gonal numbers with even k: A016742 (k = 4), A014635 (k = 6), A014642 (k = 8), A028994 (k = 10), A193872 (k = 12).

%K nonn,easy

%O 0,2

%A _Ilya Gutkovskiy_, Mar 22 2016

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified February 19 16:56 EST 2018. Contains 299356 sequences. (Running on oeis4.)