Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.
%I #9 Sep 08 2022 08:46:16
%S 3,5,10,17,26,65,65537,146690,703922,1481090,1885130,2036330,2211170,
%T 2430482,2505890,5470922,9840770,11607650,17783090,24137570,74425130,
%U 76615010,77563250,133379402,138697730,138980522,142396490,155575730,177715562,181899170
%N Numbers n such that sigma(n-1) and sigma(n) - 1 are both primes.
%C Numbers n such that A000203(n-1) and A039653(n) are both primes.
%C Intersection of A270413 and A248792.
%C Prime terms are in A249759.
%C Corresponding values of sigma(n-1): 3, 7, 13, 31, 31, 127, 131071, ...
%C Corresponding values of sigma(n) - 1: 3, 5, 17, 17, 41, 83, 65537, ...
%e 17 is in the sequence because sigma(17-1) = sigma(16) = 31 and sigma(10) - 1 = 18 - 1 = 17 (both primes).
%t Select[Range[10^7], And[PrimeQ@ DivisorSigma[1, # - 1], PrimeQ[DivisorSigma[1, #] - 1]] &] (* _Michael De Vlieger_, Mar 17 2016 *)
%o (Magma) [n: n in [2..10000000] | IsPrime(SumOfDivisors(n-1)) and IsPrime(SumOfDivisors(n)-1)]
%o (PARI) isok(n) = isprime(sigma(n-1)) && isprime(sigma(n)-1); \\ _Michel Marcus_, Mar 17 2016
%Y Cf. A000203, A039653, A248792, A249759, A270413.
%K nonn
%O 1,1
%A _Jaroslav Krizek_, Mar 16 2016