%I #23 May 31 2018 14:51:13
%S 1,2,3,4,5,6,7,8,9,36,735
%N Another variant of narcissistic numbers: integers n equal the product of squared digits of n divided by the sum of digits of n, i.e., n = A007954(n)^2/A007953(n).
%C No other terms below 10^300. - _Max Alekseyev_, May 31 2018
%e 36 is a term because 36 = (3^2*6^2)/(3+6).
%e 735 is a term because 735 = (7^2*3^2*5^2)/(7+3+5).
%t Select[Range[10^6], Function[k, k == Apply[Times, #^2]/(Total@ #) &@ IntegerDigits@ k]@ # &] (* _Michael De Vlieger_, Mar 16 2016 *)
%o (PARI) { is_A270393(n) = my(d = digits(n)); n == vecprod(d)^2/vecsum(d); } \\ _Michel Marcus_, Mar 17 2016
%Y Subsequence of A128606.
%Y Cf. A005188, A257554.
%K nonn,more,base
%O 1,2
%A _José de Jesús Camacho Medina_, Mar 16 2016