%I
%S 4,8,16,24,32,48,64,72,96,120,128,144,168,169,192,216,240,256,264,272,
%T 288,336,360,384,385,432,480,504,512,528,544,576,600,648,672,720,768,
%U 792,816,840,864,960,961,1008,1024,1056,1080,1088,1105,1121,1152,1176,1200,1296,1320,1344
%N Composite integers n such that the sum of the Pell numbers A000129(0) + ... + A000129(n1) is divisible by n.
%C Nonprime terms of A270342.
%C Terms that are not divisible by 4 are 169, 385, 961, 1105, 1121, 3827, 4901, 6265, 6441, 6601, 7107, 7801, 8119, ...
%e 4 is a term because 0 + 1 + 2 + 5 = 8 is divisible by 4.
%e 8 is a term because 0 + 1 + 2 + 5 + 12 + 29 + 70 + 169 = 288 is divisible by 8.
%o (PARI) a048739(n) = local(w=quadgen(8)); 1/2+(3/4+1/2*w)*(1+w)^n+(3/41/2*w)*(1w)^n;
%o for(n=1, 1e3, if(a048739(n1) % (n+1) == 0 && !isprime(n+1), print1(n+1, ", ")));
%Y Cf. A000129, A048739, A270342.
%K nonn
%O 1,1
%A _Altug Alkan_, Mar 15 2016
