login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of length-n 0..7 arrays with every repeated value unequal to the previous repeated value plus one mod 7+1.
1

%I #8 Jan 29 2019 05:49:52

%S 8,64,512,4088,32592,259504,2063880,16398144,130175360,1032602872,

%T 8185566032,64850011184,513508842504,4064330589760,32155606323456,

%U 254314670475768,2010717722177360,15893207240651440,125593338184358408

%N Number of length-n 0..7 arrays with every repeated value unequal to the previous repeated value plus one mod 7+1.

%H R. H. Hardin, <a href="/A269775/b269775.txt">Table of n, a(n) for n = 1..210</a>

%F Empirical: a(n) = 14*a(n-1) - 42*a(n-2) -49*a(n-3).

%F Empirical g.f.: 8*x*(1 - 6*x - 6*x^2) / ((1 - 7*x)*(1 - 7*x - 7*x^2)). - _Colin Barker_, Jan 29 2019

%e Some solutions for n=5:

%e ..4. .2. .0. .1. .2. .0. .2. .7. .4. .3. .1. .0. .7. .5. .5. .6

%e ..3. .3. .0. .1. .2. .5. .0. .1. .7. .1. .0. .5. .1. .2. .1. .6

%e ..4. .2. .6. .0. .6. .5. .0. .1. .1. .5. .3. .2. .5. .6. .7. .6

%e ..3. .0. .1. .4. .4. .1. .7. .5. .3. .3. .3. .4. .3. .1. .1. .5

%e ..5. .1. .5. .1. .0. .4. .5. .5. .0. .1. .3. .0. .1. .1. .2. .7

%Y Column 7 of A269776.

%K nonn

%O 1,1

%A _R. H. Hardin_, Mar 04 2016