%I
%S 17,41,137,457,673,2161,5953,8377,10009,22481,37657,73121,79889,
%T 220897,351529,1879121,2321393,4259113,6394657,8211977,9618457,
%U 11282017,36087113,59502217,72495233,236885513,556952881,809097481,830449097,888023449,2420630497,3845315977,13243532017,17279668529,29704277129,49624608961,59974490209,107046775289,158191299481
%N Primes 8k + 1 preceding the maximal gaps in A269424.
%C Subsequence of A007519.
%C A269424 lists the corresponding record gap sizes. See more comments there.
%H Alexei Kourbatov and Marek Wolf, <a href="https://arxiv.org/abs/1901.03785">Predicting maximal gaps in sets of primes</a>, arXiv preprint arXiv:1901.03785 [math.NT], 2019.
%e The first two primes of the form 8k + 1 are 17 and 41, so a(1)=17. The next prime of this form is 73 and the gap 73-41=32 is a new record, so a(2)=41.
%o (PARI) re=0; s=17; forprime(p=41, 1e8, if(p%8!=1, next); g=p-s; if(g>re, re=g; print1(s", ")); s=p)
%Y Cf. A007519, A269424, A269426.
%K nonn
%O 1,1
%A _Alexei Kourbatov_, Feb 25 2016
|