login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Decimal expansion of Product_{k >= 1} (1 + 1/prime(k)^6).
2

%I #19 Jun 11 2023 02:54:39

%S 1,0,1,7,0,9,2,7,6,9,1,3,0,4,9,9,2,7,6,6,4,3,2,7,2,1,3,3,0,9,7,9,0,9,

%T 9,2,0,4,9,2,2,1,9,0,7,9,4,9,4,1,0,1,1,3,4,6,6,4,6,5,1,7,9,3,8,1,8,9,

%U 3,5,3,3,5,8,3,4,2,2,7,9,4,3,1,8,1,5,1,5,9,6,4,7,8,5,0,6,6,8,9,7,8,4,5,4,6,5,1,0,6,4,0,2,6,1,3,3,6,9,3,0

%N Decimal expansion of Product_{k >= 1} (1 + 1/prime(k)^6).

%C More generally, Product_{k >= 1} (1 + 1/prime(k)^m) = zeta(m)/zeta(2*m), where zeta(m) is the Riemann zeta function.

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/PrimeProducts.html">Prime Products</a>.

%F Equals zeta(6)/zeta(12).

%F Equals 675675/(691*Pi^6).

%F Equals Sum_{k>=1} 1/A005117(k)^6 = 1 + Sum_{k>=1} 1/A113851(k). - _Amiram Eldar_, Jun 27 2020

%e 1.0170927691304992766432721330979099204922190794941...

%t RealDigits[Zeta[6]/Zeta[12], 10, 120][[1]]

%t RealDigits[675675/(691 Pi^6), 10, 120][[1]]

%o (PARI) zeta(6)/zeta(12) \\ _Amiram Eldar_, Jun 11 2023

%Y Cf. A005117, A082020, A113851, A157289, A157290, A157291.

%K nonn,cons

%O 1,4

%A _Ilya Gutkovskiy_, Feb 25 2016