login
Permutation of natural numbers: a(1) = 1, a(2n) = A179016(1+a(n)), a(2n+1) = A213713(a(n)).
5

%I #7 Mar 07 2016 12:31:15

%S 1,3,2,7,6,4,5,16,13,15,12,8,9,11,10,46,27,35,22,42,25,32,21,19,14,23,

%T 17,31,20,26,18,158,69,85,43,116,54,67,36,142,62,78,40,104,50,64,34,

%U 57,30,39,24,71,37,49,28,101,48,63,33,81,41,53,29,669,219,259,100,321,122,145,65,476,164,190,80,255,98,120,55

%N Permutation of natural numbers: a(1) = 1, a(2n) = A179016(1+a(n)), a(2n+1) = A213713(a(n)).

%C This sequence can be represented as a binary tree. Each left hand child is produced as A179016(1+n), and each right hand child as A213713(n), when the parent contains n:

%C |

%C ...................1...................

%C 3 2

%C 7......../ \........6 4......../ \........5

%C / \ / \ / \ / \

%C / \ / \ / \ / \

%C / \ / \ / \ / \

%C 16 13 15 12 8 9 11 10

%C 46 27 35 22 42 25 32 21 19 14 23 17 31 20 26 18

%C etc.

%H Antti Karttunen, <a href="/A269402/b269402.txt">Table of n, a(n) for n = 1..4095</a>

%H <a href="/index/Per#IntegerPermutation">Index entries for sequences that are permutations of the natural numbers</a>

%F a(1) = 1, a(2n) = A179016(1+a(n)), a(2n+1) = A213713(a(n)).

%F As a composition of other permutations:

%F a(n) = A269397(A269392(n)).

%o (Scheme, with memoization-macro definec)

%o (definec (A269402 n) (cond ((<= n 1) n) ((even? n) (A179016 (+ 1 (A269402 (/ n 2))))) (else (A213713 (A269402 (/ (- n 1) 2))))))

%Y Inverse: A269401.

%Y Cf. A179016, A213713.

%Y Related or similar permutations: A269392, A269397.

%K nonn,tabf,base

%O 1,2

%A _Antti Karttunen_, Mar 05 2016