login
Number of 4Xn 0..3 arrays with some element plus some horizontally or antidiagonally adjacent neighbor totalling three exactly once.
1

%I #4 Feb 21 2016 08:59:59

%S 0,20412,1365336,74853576,3719884392,174924572760,7934992835112,

%T 350946381867480,15232155757251048,651580499598523992,

%U 27551808205246504872,1154085846201751972824,47965168186749101620584

%N Number of 4Xn 0..3 arrays with some element plus some horizontally or antidiagonally adjacent neighbor totalling three exactly once.

%C Row 4 of A269276.

%H R. H. Hardin, <a href="/A269279/b269279.txt">Table of n, a(n) for n = 1..210</a>

%F Empirical: a(n) = 96*a(n-1) -3108*a(n-2) +40720*a(n-3) -265326*a(n-4) +931200*a(n-5) -1766452*a(n-6) +1678992*a(n-7) -622521*a(n-8) for n>12

%e Some solutions for n=2

%e ..0..3. .2..0. .1..3. .1..3. .0..2. .0..2. .0..1. .0..2. .0..1. .1..3

%e ..3..3. .0..0. .0..0. .3..1. .3..3. .3..2. .3..2. .2..3. .3..1. .2..2

%e ..2..2. .1..3. .2..2. .2..2. .0..2. .1..0. .0..1. .3..2. .3..0. .1..3

%e ..0..2. .1..2. .0..1. .3..2. .2..3. .0..2. .1..2. .1..3. .0..0. .1..1

%Y Cf. A269276.

%K nonn

%O 1,2

%A _R. H. Hardin_, Feb 21 2016