%I #7 Jan 18 2019 14:38:58
%S 8,32,123,521,1887,7477,27042,102070,368391,1351259,4850557,17489481,
%T 62373468,222422348,788291635,2789267661,9831173339,34583332541,
%U 121320954422,424799241314,1484281289599,5177412026719,18028809567225
%N Number of 3 X n binary arrays with some element plus some horizontally, diagonally or antidiagonally adjacent neighbor totalling two not more than once.
%H R. H. Hardin, <a href="/A269077/b269077.txt">Table of n, a(n) for n = 1..210</a>
%F Empirical: a(n) = 4*a(n1) + 8*a(n2)  34*a(n3)  16*a(n4) + 60*a(n5)  25*a(n6).
%F Empirical g.f.: x*(8  69*x^2 + 45*x^3 + 35*x^4  25*x^5) / (1  2*x  6*x^2 + 5*x^3)^2.  _Colin Barker_, Jan 18 2019
%e Some solutions for n=4:
%e ..1..0..1..0. .0..0..0..0. .1..0..0..0. .1..0..0..0. .0..0..0..1
%e ..0..0..0..1. .0..0..1..0. .0..0..0..0. .0..1..0..1. .0..0..1..0
%e ..1..0..0..1. .1..0..1..0. .0..0..0..0. .0..1..0..1. .1..0..1..0
%Y Row 3 of A269075.
%K nonn
%O 1,1
%A _R. H. Hardin_, Feb 19 2016
