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We show how the terms of A268924 and A271222 can be expressed in terms
of the Lucas numbers and the companion Pell numbers, respectively.
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1. A268924 : One of the two successive approximations up to 3n for the 3-adic
integer sqrt(−2). These are the numbers congruent to 1 mod 3

Let a(n) = A268924(n). In the ring of 3-adic numbers Z3, the root α of the
equation x2 + 2 = 0 with α ≡ 1 (mod 3) is the 3-adic limit as n→∞ of a(n).
The 3-adic expansion of α can be found in A271223. The terms of A268924
are calculated using Hensel's lemma and are uniquely detemined by the pair of
conditions

a(n) ≡ 1 (mod 3) and a(n)2 + 2 ≡ 0 (mod 3n) (H)

subject to the restriction 0 ≤ a(n) < 3n.

Let L(n) = A000032(n) denote the n-th Lucas number. De�ne A(n) = L(3n)
= A006267(n) . In this section we prove that a(n) = the smallest positive
residue of A(n) mod 3n.

Proposition 1. A(n) = L(3n) satis�es

(i)
A(n+ 1) = A(n)3 + 3A(n) (1)

(ii)
A(n) ≡ 1 (mod 3) (2)

(iii)
A (n) ≡ A (n− 1) (mod 3n) (3)

(iv)
A(n)2 + 2 ≡ 0

(
mod 3n+1

)
(4)

Sketch proof.

(i) This is an easy consequence of Binet's formula L(n) = φn + (1− φ)n for the

Lucas numbers, where φ =
1 +
√
5

2
is the golden ratio.

(ii) Immediately follows from (1) by induction with base case A(1) = 1.
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(iii) This is a particular case of the Gauss congruences for the Lucas numbers.
Recall that an integer sequence {u(n)} satis�es the Gauss congruences if

u (mpr) ≡ u
(
mpr−1

)
(mod pr) (5)

for all primes p and all positive integers m and r. A necesary and su�cient
condition for a sequence {u(n)} to satisfy the Gauss congruences is that the
series expansion of

exp

∑
n≥1

u(n)
xn

n


has integer coe�cients. By means of the generating functions of the Lucas and
Fibonacci numbers it is straightforward to show that

exp

∑
n≥1

L(n)
xn

n

 =
∑
n≥0

F(n+ 1)xn,

where F(n) denotes the n-th Fibonacci number A000045(n). Thus the Lucas
numbers satisfy the Gauss congruences (5). Congruence (3) is the particular
case m = 1 and p = 3.

(iv) Rearrange (1) to give

A(n)2 + 2 =
A(n+ 1)−A(n)

A(n)

It follows from (2) and (3) that

A(n)2 + 2 ≡ 0
(
mod 3n+1

)
.

�

Comparing (2) and (4) with the conditions (H) determining a(n) we see that
the least positive residue of A(n) (mod 3n) is equal to a(n).

2. A271222: One of the two successive approximations up to 3n for the 3-adic
integer sqrt(−2). These are the numbers congruent to 2 mod 3.

Let b(n) = A271222(n). In the ring of 3-adic numbers Z3, the root β of the
equation x2 + 2 = 0 with β ≡ 2 (mod 3) is the 3-adic limit as n→∞ of b(n).
The 3-adic expansion of β can be found in A271224.

The terms of A271222 are calculated using Hensel's lemma and are uniquely
detemined by the pair of conditions

b(n) ≡ 2 (mod 3) and b(n)2 + 2 ≡ 0 (mod 3n) (H′)

subject to the restriction 0 ≤ b(n) < 3n.
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Let P(n) = A002203(n) denote the n-th companion Pell number. Recall that
the companion Pell numbers are given by the formula

P(n) = (1 +
√
2)n +

(
1−
√
2
)n

.

De�ne B(n) = P(3n) = A006266(n). We claim that b(n) = the smallest
positive residue of B(n) mod 3n.

The proof of the following proposition exactly parallels that of Proposition 1.

Proposition 2. B(n) = P(3n) satis�es

(i)
B(n+ 1) = B(n)3 + 3B(n) (6)

(ii)
B(n) ≡ 2 (mod 3) (7)

(iii)
B (n) ≡ B (n− 1) (mod 3n) (8)

(iv)
B(n)2 + 2 ≡ 0

(
mod 3n+1

)
(9)

�

Comparing (7) and (9) with the conditions (H′) determining b(n) we see that
the least positive residue of B(n) (mod 3n) is equal to b(n) as claimed above.
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