A note on A268924 and A271222

Peter Bala, Nov 28 2022

We show how the terms of A268924 and A271222 can be expressed in terms of the Lucas numbers and the companion Pell numbers, respectively.

1. A268924 : One of the two successive approximations up to 3^n for the 3-adic integer sqrt(-2). These are the numbers congruent to 1 mod 3

Let a(n) = A268924(n). In the ring of 3-adic numbers \mathbb{Z}_3 , the root α of the equation $x^2 + 2 = 0$ with $\alpha \equiv 1 \pmod{3}$ is the 3-adic limit as $n \to \infty$ of a(n). The 3-adic expansion of α can be found in A271223. The terms of A268924 are calculated using Hensel's lemma and are uniquely detemined by the pair of conditions

$$a(n) \equiv 1 \pmod{3} \quad \text{and} \quad a(n)^2 + 2 \equiv 0 \pmod{3^n} \tag{H}$$

subject to the restriction $0 \le a(n) < 3^n$.

Let L(n) = A000032(n) denote the *n*-th Lucas number. Define $A(n) = L(3^n) = A006267(n)$. In this section we prove that a(n) = the smallest positive residue of $A(n) \mod 3^n$.

Proposition 1. $A(n) = L(3^n)$ satisfies

(iv)

$$A(n+1) = A(n)^3 + 3A(n)$$
 (1)

$$A(n) \equiv 1 \pmod{3} \tag{2}$$

(iii) $A(n) \equiv A(n-1) \pmod{3^n}$

$$A(n)^2 + 2 \equiv 0 \pmod{3^{n+1}} \tag{4}$$

(3)

Sketch proof.

(i) This is an easy consequence of Binet's formula $L(n) = \phi^n + (1 - \phi)^n$ for the Lucas numbers, where $\phi = \frac{1 + \sqrt{5}}{2}$ is the golden ratio.

(ii) Immediately follows from (1) by induction with base case A(1) = 1.

(iii) This is a particular case of the Gauss congruences for the Lucas numbers. Recall that an integer sequence $\{u(n)\}$ satisfies the Gauss congruences if

$$u\left(mp^{r}\right) \equiv u\left(mp^{r-1}\right) \pmod{p^{r}} \tag{5}$$

for all primes p and all positive integers m and r. A necessary and sufficient condition for a sequence $\{u(n)\}$ to satisfy the Gauss congruences is that the series expansion of

$$\exp\left(\sum_{n\geq 1} u(n)\frac{x^n}{n}\right)$$

has integer coefficients. By means of the generating functions of the Lucas and Fibonacci numbers it is straightforward to show that

$$\exp\left(\sum_{n\geq 1} \mathcal{L}(n)\frac{x^n}{n}\right) = \sum_{n\geq 0} \mathcal{F}(n+1)x^n,$$

where F(n) denotes the *n*-th Fibonacci number A000045(n). Thus the Lucas numbers satisfy the Gauss congruences (5). Congruence (3) is the particular case m = 1 and p = 3.

(iv) Rearrange (1) to give

$$\mathcal{A}(n)^{2} + 2 = \frac{\mathcal{A}(n+1) - \mathcal{A}(n)}{\mathcal{A}(n)}$$

It follows from (2) and (3) that

$$A(n)^2 + 2 \equiv 0 \pmod{3^{n+1}}.$$

Comparing (2) and (4) with the conditions (H) determining a(n) we see that the least positive residue of $A(n) \pmod{3^n}$ is equal to a(n).

2. A271222: One of the two successive approximations up to 3^n for the 3-adic integer sqrt(-2). These are the numbers congruent to 2 mod 3.

Let b(n) = A271222(n). In the ring of 3-adic numbers \mathbb{Z}_3 , the root β of the equation $x^2 + 2 = 0$ with $\beta \equiv 2 \pmod{3}$ is the 3-adic limit as $n \to \infty$ of b(n). The 3-adic expansion of β can be found in A271224.

The terms of A271222 are calculated using Hensel's lemma and are uniquely detemined by the pair of conditions

$$b(n) \equiv 2 \pmod{3}$$
 and $b(n)^2 + 2 \equiv 0 \pmod{3^n}$ (H')

subject to the restriction $0 \le b(n) < 3^n$.

Let P(n) = A002203(n) denote the *n*-th companion Pell number. Recall that the companion Pell numbers are given by the formula

$$P(n) = (1 + \sqrt{2})^n + (1 - \sqrt{2})^n.$$

Define $B(n) = P(3^n) = A006266(n)$. We claim that b(n) = the smallest positive residue of $B(n) \mod 3^n$.

The proof of the following proposition exactly parallels that of Proposition 1.

Proposition 2. $B(n) = P(3^n)$ satisfies

(i)

$$B(n+1) = B(n)^3 + 3B(n)$$
(6)

(ii)

$$B(n) \equiv 2 \pmod{3} \tag{7}$$

(iii)
$$B(n) \equiv B(n-1) \pmod{3^n}$$
(8)

(iv)

$$B(n)^2 + 2 \equiv 0 \pmod{3^{n+1}}$$
(9)

Comparing (7) and (9) with the conditions (H') determining b(n) we see that the least positive residue of $B(n) \pmod{3^n}$ is equal to b(n) as claimed above.