Peter Bala, Nov 282022
We show how the terms of A268924 and A271222 can be expressed in terms of the Lucas numbers and the companion Pell numbers, respectively.

1. A268924: One of the two successive approximations up to $3^{n}$ for the 3 -adic integer sqrt ( -2 ). These are the numbers congruent to $1 \bmod 3$

Let $a(n)=\mathrm{A} 268924(\mathrm{n})$. In the ring of 3-adic numbers $\mathbb{Z}_{3}$, the root $\alpha$ of the equation $x^{2}+2=0$ with $\alpha \equiv 1(\bmod 3)$ is the 3 -adic limit as $n \rightarrow \infty$ of $a(n)$. The 3-adic expansion of $\alpha$ can be found in A271223. The terms of A268924 are calculated using Hensel's lemma and are uniquely detemined by the pair of conditions

$$
\begin{equation*}
a(n) \equiv 1(\bmod 3) \quad \text { and } a(n)^{2}+2 \equiv 0\left(\bmod 3^{n}\right) \tag{H}
\end{equation*}
$$

subject to the restriction $0 \leq a(n)<3^{n}$.

Let $\mathrm{L}(n)=$ A000032(n) denote the $n$-th Lucas number. Define $\mathrm{A}(n)=\mathrm{L}\left(3^{n}\right)$ $=\mathrm{A} 006267(\mathrm{n})$. In this section we prove that $a(n)=$ the smallest positive residue of $\mathrm{A}(n) \bmod 3^{n}$.

Proposition 1. $\mathrm{A}(n)=\mathrm{L}\left(3^{n}\right)$ satisfies

$$
\begin{equation*}
\mathrm{A}(n+1)=\mathrm{A}(n)^{3}+3 \mathrm{~A}(n) \tag{i}
\end{equation*}
$$

(ii)

$$
\begin{equation*}
\mathrm{A}(n) \equiv 1(\bmod 3) \tag{2}
\end{equation*}
$$

(iii)

$$
\begin{equation*}
\mathrm{A}(n) \equiv \mathrm{A}(n-1)\left(\bmod 3^{n}\right) \tag{3}
\end{equation*}
$$

(iv)

$$
\begin{equation*}
\mathrm{A}(n)^{2}+2 \equiv 0\left(\bmod 3^{n+1}\right) \tag{4}
\end{equation*}
$$

## Sketch proof.

(i) This is an easy consequence of Binet's formula $\mathrm{L}(n)=\phi^{n}+(1-\phi)^{n}$ for the Lucas numbers, where $\phi=\frac{1+\sqrt{5}}{2}$ is the golden ratio.
(ii) Immediately follows from (1) by induction with base case $\mathrm{A}(1)=1$.
(iii) This is a particular case of the Gauss congruences for the Lucas numbers. Recall that an integer sequence $\{u(n)\}$ satisfies the Gauss congruences if

$$
\begin{equation*}
u\left(m p^{r}\right) \equiv u\left(m p^{r-1}\right)\left(\bmod p^{r}\right) \tag{5}
\end{equation*}
$$

for all primes $p$ and all positive integers $m$ and $r$. A necesary and sufficient condition for a sequence $\{u(n)\}$ to satisfy the Gauss congruences is that the series expansion of

$$
\exp \left(\sum_{n \geq 1} u(n) \frac{x^{n}}{n}\right)
$$

has integer coefficients. By means of the generating functions of the Lucas and Fibonacci numbers it is straightforward to show that

$$
\exp \left(\sum_{n \geq 1} \mathrm{~L}(n) \frac{x^{n}}{n}\right)=\sum_{n \geq 0} \mathrm{~F}(n+1) x^{n}
$$

where $\mathrm{F}(n)$ denotes the $n$-th Fibonacci number A000045(n). Thus the Lucas numbers satisfy the Gauss congruences (5). Congruence (3) is the particular case $m=1$ and $p=3$.
(iv) Rearrange (1) to give

$$
\mathrm{A}(n)^{2}+2=\frac{\mathrm{A}(n+1)-\mathrm{A}(n)}{\mathrm{A}(n)}
$$

It follows from (2) and (3) that

$$
\mathrm{A}(n)^{2}+2 \equiv 0\left(\bmod 3^{n+1}\right)
$$

Comparing (2) and (4) with the conditions (H) determining $a(n)$ we see that the least positive residue of $\mathrm{A}(n)\left(\bmod 3^{n}\right)$ is equal to $a(n)$.
2. A271222 One of the two successive approximations up to $3^{n}$ for the 3 -adic integer sqrt $(-2)$. These are the numbers congruent to $2 \bmod 3$.

Let $b(n)=\mathrm{A} 271222(\mathrm{n})$. In the ring of 3 -adic numbers $\mathbb{Z}_{3}$, the root $\beta$ of the equation $x^{2}+2=0$ with $\beta \equiv 2(\bmod 3)$ is the 3 -adic limit as $n \rightarrow \infty$ of $b(n)$. The 3-adic expansion of $\beta$ can be found in A271224.

The terms of A271222 are calculated using Hensel's lemma and are uniquely detemined by the pair of conditions

$$
b(n) \equiv 2(\bmod 3) \quad \text { and } \quad b(n)^{2}+2 \equiv 0\left(\bmod 3^{n}\right)
$$

subject to the restriction $0 \leq b(n)<3^{n}$.

Let $\mathrm{P}(n)=\mathrm{A} 002203(\mathrm{n})$ denote the $n$-th companion Pell number. Recall that the companion Pell numbers are given by the formula

$$
\mathrm{P}(n)=(1+\sqrt{2})^{n}+(1-\sqrt{2})^{n}
$$

Define $\mathrm{B}(n)=\mathrm{P}\left(3^{n}\right)=$ A006266(n). We claim that $b(n)=$ the smallest positive residue of $\mathrm{B}(n) \bmod 3^{n}$.

The proof of the following proposition exactly parallels that of Proposition 1.

Proposition 2. $\mathrm{B}(n)=\mathrm{P}\left(3^{n}\right)$ satisfies
(i)

$$
\begin{equation*}
\mathrm{B}(n+1)=\mathrm{B}(n)^{3}+3 \mathrm{~B}(n) \tag{6}
\end{equation*}
$$

(ii)

$$
\begin{equation*}
\mathrm{B}(n) \equiv 2(\bmod 3) \tag{7}
\end{equation*}
$$

(iii)

$$
\begin{equation*}
\mathrm{B}(n) \equiv \mathrm{B}(n-1)\left(\bmod 3^{n}\right) \tag{8}
\end{equation*}
$$

(iv)

$$
\begin{equation*}
\mathrm{B}(n)^{2}+2 \equiv 0\left(\bmod 3^{n+1}\right) \tag{9}
\end{equation*}
$$

Comparing (7) and (9) with the conditions ( $\mathrm{H}^{\prime}$ ) determining $b(n)$ we see that the least positive residue of $\mathrm{B}(n)\left(\bmod 3^{n}\right)$ is equal to $b(n)$ as claimed above.

