login
A268881
Number of n X 3 binary arrays with some element plus some horizontally or antidiagonally adjacent neighbor totalling two exactly once.
1
2, 14, 84, 462, 2418, 12252, 60666, 295230, 1417452, 6732102, 31690914, 148080468, 687592338, 3175567374, 14597507076, 66827528094, 304831251762, 1386004252620, 6283722000714, 28414577975934, 128187044049948, 577056144993366
OFFSET
1,1
LINKS
FORMULA
Empirical: a(n) = 10*a(n-1) - 31*a(n-2) + 30*a(n-3) - 9*a(n-4).
Empirical g.f.: 2*x*(1 - 2*x)*(1 - x + x^2) / (1 - 5*x + 3*x^2)^2. - Colin Barker, Jan 15 2019
EXAMPLE
Some solutions for n=4:
..0..1..0. .0..0..0. .1..0..0. .0..1..0. .0..1..1. .1..0..1. .1..0..0
..0..1..0. .0..1..0. .1..1..0. .0..1..0. .0..0..0. .0..0..0. .1..0..0
..1..0..0. .0..0..1. .0..0..1. .1..0..0. .1..0..0. .1..1..0. .1..1..0
..0..0..1. .0..1..0. .1..0..0. .1..0..1. .1..0..0. .0..0..0. .0..1..0
CROSSREFS
Column 3 of A268886.
Sequence in context: A077444 A335693 A138126 * A053141 A339281 A361552
KEYWORD
nonn
AUTHOR
R. H. Hardin, Feb 15 2016
STATUS
approved