login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of sequences with n copies each of 1,2,3,4 and longest increasing subsequence of length 4.
3

%I #18 Mar 11 2016 11:59:02

%S 1,641,195709,46922017,10258694241,2176464012941,460827731023773,

%T 98540942707986273,21364658238692907265,4697818999010952011441,

%U 1046430770756355786405517,235755137688345453796236397,53640184515807269993604743389,12308974812428409561104536925709

%N Number of sequences with n copies each of 1,2,3,4 and longest increasing subsequence of length 4.

%H Alois P. Heinz, <a href="/A268840/b268840.txt">Table of n, a(n) for n = 1..400</a>

%H J. D. Horton and A. Kurn, Counting sequences with complete increasing subsequences, Congressus Numerantium, 33 (1981), 75-80. <a href="http://www.ams.org/mathscinet-getitem?mr=681905">MR 681905</a>

%H Vaclav Kotesovec, <a href="/A268840/a268840.txt">Recurrence (of order 4)</a>

%F a(n) ~ 2^(8*n-1/2) / (Pi*n)^(3/2). - _Vaclav Kotesovec_, Feb 21 2016

%Y Column k=4 of A047909.

%K nonn

%O 1,2

%A _Alois P. Heinz_, Feb 14 2016