%I #4 Feb 13 2016 12:24:01
%S 10,131,1144,9085,67100,477128,3295246,22302699,148575958,977609634,
%T 6368239274,41140907455,263939673228,1683296018391,10680625988516,
%U 67468330344536,424526386272378,2661981983940811,16640406499054332
%N Number of nX5 binary arrays with some element plus some horizontally, vertically or antidiagonally adjacent neighbor totalling two exactly once.
%C Column 5 of A268789.
%H R. H. Hardin, <a href="/A268786/b268786.txt">Table of n, a(n) for n = 1..210</a>
%F Empirical: a(n) = 2*a(n-1) +41*a(n-2) +54*a(n-3) -509*a(n-4) -2182*a(n-5) -2830*a(n-6) +1766*a(n-7) +7914*a(n-8) +2584*a(n-9) -10583*a(n-10) -6092*a(n-11) +11506*a(n-12) +5348*a(n-13) -11688*a(n-14) -620*a(n-15) +9251*a(n-16) -4462*a(n-17) -3137*a(n-18) +4774*a(n-19) -2365*a(n-20) +338*a(n-21) +198*a(n-22) -106*a(n-23) +12*a(n-24) +4*a(n-25) -a(n-26)
%e Some solutions for n=4
%e ..0..0..0..0..0. .0..1..1..0..0. .0..0..0..0..0. .0..1..0..0..1
%e ..0..1..0..0..1. .0..0..0..0..1. .0..0..1..0..1. .0..0..0..1..0
%e ..0..0..1..0..0. .0..1..0..0..0. .1..0..0..0..0. .0..0..0..0..1
%e ..0..0..1..0..0. .0..0..1..0..1. .1..0..0..0..1. .1..0..1..0..0
%Y Cf. A268789.
%K nonn
%O 1,1
%A _R. H. Hardin_, Feb 13 2016