For $\mathrm{n}=5$ there are two maximal polyominoes known that, properly slanted, fit the $n \mathrm{x} \mathrm{n}$ square. For $\mathrm{n}=6$ there are 5 such maximal polyominoes know:

The slanted squares 6×6 that contain these maximal polyominoes are determined by the fractional parts of the coordinates of the "leftmost" vertex and the slope:

1. $(1 / 2,1 / 2) ;-1$
2. $(3 / 5,1 / 5) ;-1 / 2$
3. (7/13, 4/13); -2/3
4. $(0,0) ;-3 / 4$
5. $(13 / 25,9 / 25) ;-3 / 4$

The following diagram shows the number of polyominoes that are contained in these maximal polyominoes, and do not fit the original, "aligned" square.

Altogether: 150409 polyominoes.
Therefore: A268427(6)=A268416(6)+150409.
As the diagram shows, some "slanted" polyominos are contained in two or three maximal polyominoes; this can also be read directly from Pictures 1-5.

