Open Problems in the OEIS

Neil JA Sloane

Guest Lecture, Zeilberger Experimental Math Class, May 2016

- Puzzles
- Strange recurrences
- Number theory
- Counting problems

PUZZLES

6I, 2I, 82, 43, 3, ?

(A087409)

Low-Hanging Fruit from the OEIS

Some new problems for the ghosts of Fermat, Gauss, Euler, ...

Strange Recurrences

- Modified Fibonacci
- Reed Kelley
- A recurrence that looks ahead
- Van Eck's sequence

Modified Fibonacci
$\mathrm{a}(\mathrm{n})=\mathrm{a}(\mathrm{n}-1)+\mathrm{a}((\mathrm{a}(\mathrm{n}-1)-1) \bmod \mathrm{n})$ with $\mathrm{a}(0)=\mathrm{a}(1)=1$
A268I76, Christian Perfect, Jan 2016
Similar to Al 25204, also not analyzed

Pin plot of A268176(n)

Explain!

Reed Kelley's Sequence A2I455I

14th century Narayana cows sequence A930:

$$
\begin{aligned}
& a(n)=a(n-1)+ a(n-3) \\
& \\
& \text { I, I, I, 2, 3, 4, 6, 9, I3, I9, 28, } \ldots
\end{aligned}
$$

Reed Kelley, 2012:

$$
a(n)=\frac{a(n-1)+a(n-3)}{\operatorname{gcd}\{a(n-1), a(n-3)\}}
$$

A recurrence that looks ahead
$\mathrm{a}(2 \mathrm{k})=\mathrm{k}+\mathrm{a}(\mathrm{k}), \mathrm{a}(2 \mathrm{k}+1)=\mathrm{k}+\mathrm{a}(6 \mathrm{k}+4)$ with $\mathrm{a}(1)=0$.
A271473, suggested by $3 x+1$ sequence $A 6370$ and new A266569

Explain!

Jan Ritsema van Eck's Sequence

$0,0,1,0,2,0,2,2,1,6,0,5$, $0,2,6,5,4,0,5,3,0,3,2,9$, $0,4,9,3,6,14,0,6,3,5,15,0$, $5,3,5,2,17,0,6,11,0,3,8,0, \ldots$
$a(n)$: how far back did we last see $a(n-I)$? or 0 if $\mathrm{a}(\mathrm{n}-\mathrm{I})$ never appeared before.

Van Eck: Al8I39|

A181391 as a graph:

Pin plot of A181391

Scatterplot of $\log ($ A181391(n)+1)

Thm. (Van Eck) There are infinitely many zeros.

Proof: (i) If not, no new terms, so bounded. Let $M=$ max term.
Any block of length M determines the sequence.
Only M^M blocks of length M.
So a block repeats.
So sequence becomes periodic.
Period contains no 0's.

Van Eck: Al8I39|

Proof (ii). Suppose period has length p and starts at term r.

Therefore period really began at term r-I.
Therefore period began at start of sequence. But first term was 0 , contradiction.

Van Eck: Al8I39|

It seems that:

$$
\lim \sup a(n) / n=1
$$

Gaps between 0's roughly log_10 n
Every number eventually appears

Proofs are lacking!
Van Eck: Al8I39।

Conjecture:

There is no nontrivial cycle

(David Applegate: Only trivial cycles of length up through 14)

Number Theory

- Sum of primes in sum of previous terms
- $3^{\wedge} n+1=$ square + square
- Yosemite graph
- Leroy Quet's prime-producing sequence
- 999999000000
- A memorable prime

$a(n)=$ sum of prime factors of sum of all previous terms

(with repetition, starting I, I)

$1,1,2,4,6,9,23,25,71,73,48,263,265,120,911,913,552,192,85,27,35,53,296,66$, $455,289,48,188,5021,5023,159,190,379,946,900,600,97,204,118,512,87,148,3886$, 23291, 23293, 71, 896, 11812, 60, 41359,

$$
\begin{gathered}
1+1+2+4+6=14=2 \times 7 \text { gives } 2+7=9 \\
\text { A268868, David Sycamore, Feb } 2016
\end{gathered}
$$

Explain!

Generalize!

Odd numbers n such that $3^{\wedge} n+I$ is sum of 2 squares
$5,13,65,149,281,409,421,449,461,577$

$$
3^{5}+1=244=10^{2}+12^{2}
$$

Found by Keenan Curtis, u/grad, Wake Forest U.
Only 10 terms known
A272069 = A404 intersect A34472

April 192016

Yosemite Graph??

Numbers n such that sum of divisors (A203(n)) is a Fibonacci number (in A45)

Random combination of 2 sequences, except look at the graph:

Scatterplot of A272412(n)
Altug Alkan, Apr 292016

Have 10000 terms but need a lot more

Hostadter's Q-sequence A5I85

Leroy Quet's Primegenerating sequence AI 34204

Franklin Adams-Watters Al66I33

"About your cat, Mr. Schrödinger-I have
good news and bad news."
(The New Yorker, March 2015)

Leroy Quet's Prime-Producing Sequence

0	1	2	3	4	5	6	7	8	9	10
2	3	5	7	13	17	19	23	41	31	29

$\mathrm{q}=$ smallest missing prime such that n divides $\mathrm{p}+\mathrm{q}$
10 divides $3 \mid+29$

$$
\begin{aligned}
& p+q=k n \\
& q=-p+k n
\end{aligned}
$$

Dirichlet: OK unless p divides n

> Does the sequence exist?

999999000000

Max Alekseyev, A26I206, Aug II 2015

If $\left\lceil n^{1 / k}\right\rceil \mid n$ for all k then $\mathrm{n} \leq 999999000000$ (conj.)
$1,2,4,6,12,36,132,144,156,900,3600,4032,7140,18360,44100,46440,4062240$, 9147600, 999999000000

No more terms below $10^{\wedge} 16$

999999000000 (cont.)

Th. I

$$
\lceil\sqrt{n}\rceil \left\lvert\, n \Leftrightarrow n=\left\lfloor\frac{M}{2}\right\rfloor\left\lceil\frac{M}{2}\right\rceil \quad\right. \text { for some } M
$$

(the quarter-squares, A002620)
Pf.

$$
\begin{gathered}
\lceil\sqrt{n}\rceil=m+1 \Leftrightarrow m^{2}+1 \leq n \leq(m+1)^{2} \\
\text { Say } n=m^{2}+1+i \\
\text { So } i=m-1 \text { or } 2 m, \quad n=m(m+1) \text { or }(m+1)^{2} \\
\mathrm{M}=2 m+1 \text { or } 2 m+2
\end{gathered}
$$

Example:

$$
999999000000=\left\lfloor\frac{1999999}{2}\right\rfloor\left\lceil\frac{1999999}{2}\right\rceil
$$

999999000000 (cont.)

Th. 2

$$
\left\lceil n^{1 / 3}\right\rceil \mid n \Leftrightarrow n=m^{3}+1+\lambda(m+1), 0 \leq \lambda \leq 3 m
$$

Example: With $m=9999, \lambda=29897$,

$$
m^{3}+1+\lambda(m+1)=999999000000
$$

If both Th I and Th 2 apply, get A2614I7:
$1,2,4,6,9,12,36,56,64,90,100,110,132,144,156,210,400,576,702,729,870, \ldots$

And so on ?

A Memorable Prime 12345678910987654321

When is $123 \ldots \mathrm{n}$ I n n-I.... 321 prime?
It is a square: $\mathrm{II} . . .\left.\right|^{2}$ for $\mathrm{n} \leq 9$.
Prime for $n=10,2446$ (Shyam Gupta, PRP only), ...

Or, in base b, when is I23...b-। b b-I... 32 I prime?
Prime for $b=$

$$
\begin{array}{r}
2,3,4,6,9,10,16,40,104,8840 \text { (PRP) } \\
\text { (David Broadhurst, Aug 2015, A260343) }
\end{array}
$$

Counting Problems

- Sequences with no final repeats
- Lines in the plane; or in general position
- Points in $\{0, I\}^{\wedge} n$ with no right angles
- Alex Meiburg's A260273

Sequences with no final repeats

Number of binary sequences, length n, not of form

$$
X Y^{k}, k>1
$$

Good: 00001, 11001 Bad: 00000,00011,00101

$$
\begin{gather*}
\text { 2, 2, 4, 6, I2, 20, 40, 74, I48, 286, ... } \tag{Al22536}\\
a(2 n+1)=2 a(2 n), a(2 n)=2 a(2 n-1)-b(n)
\end{gather*}
$$

where $b(n)=$ number of robust sequences S
[SS without initial symbol has no final repeats]

$$
\mathrm{S}=32232 \text { is not robust: } \mathrm{SS}=3223232232
$$

Have 200 terms. Conj. $a(n) / 2 \uparrow n \rightarrow 0.27004339 \ldots$

$$
\begin{equation*}
\left.\left.\frac{a(1)=1}{a(2)=2}\right|_{(2.1) P_{2}} ^{L}+1.1\right) \tag{1.1}
\end{equation*}
$$

No. of ways to arrange n lines in the plane

$$
I, 2,4,9,47,79 I, 37830
$$

$$
a(3)=4
$$

$(3.1) P_{3}$
(3.2) $P_{2} L$

A24I600

$$
a(4)=9
$$

(4.1) P_{4} (4.2) $P_{3} L$
(4.3) P_{2}^{2}
(4.4) $P_{2} S_{2}(a)(4.5) P_{2} S_{2}(b)$

$$
\text { (4.6) } P_{2} S_{2}(c)
$$

$(4.7) S_{4} \quad(4.8) S_{3} L$
$(4.9) G_{4}$
$a(5)=47$. Summary:
$P_{5}: 1, P_{4} L: 1, P_{3} P_{2}: 1, P_{3} S_{2}: 4, P_{2}^{2} L: 6$,
$P_{2} G_{3}: 14, P_{2} S_{3}: 3, S_{5}: 1, S_{4} L: 1, S_{6}^{3}, 6 Q_{5} G$.
$S_{3}^{2}: 3, S_{3} S_{2}: 6, G_{5}: 6$
A24I600 (cont.)

(a)

(b)

(c)

(d)

$$
\begin{gathered}
(5.8)-(5.13)+1+2 \\
P_{2}^{2} L:+1
\end{gathered}
$$

(a)

(b)

(f)

A90338

A subset: n lines in general position

I, I, I, I, 6, 43, 922, 38609
Wild and Reeves, 2004

5 lines in general position: 6 ways

Points in $\{0, I\}^{\wedge} \mathrm{n}$ with no right angles

$a(n)=\max$ no of points in $\{0, I\}^{\wedge} n$ such that all angles PQR are less than 90 degs.

A89676, Classic problem, only 10 terms known!

$$
\begin{gathered}
1,2,2,4,5,6,8,9,10,16 \\
a(3)=4: \quad\{000,0| |,|0|,| | 0\} . \\
a(4)=5:\{00| |, 0|0|, 0| | 0,|000,||| |\} . \\
a(5)=6:\{00000000| | 00|0| 0|00| 1000| || | \mid 0\}
\end{gathered}
$$

NEED MORE TERMS!

Prompted by Prof. Jeff Kahn's lecture on The Probabilistic Method, March 282016

Alex Meiburg's A260273

Alex Meiburg's A260273

Define $M(n)$: E.g. $n=57=1| | 00 \mid$
Can see $0, I, I 0, I I, I 00$ but not $10 \mid$ so $M(57)=5$
$M(n)=$ smallest missing number in binary exp. of n
(A261922)
$M^{\prime}(n)=$ smallest missing positive number in binary exp. of n

$$
\mathrm{a}(\mathrm{I})=\mathrm{I} ; \mathrm{a}(\mathrm{n}+\mathrm{I})=\mathrm{a}(\mathrm{n})+M^{\prime}(\mathrm{a}(\mathrm{n}))
$$

$$
1,3,5,8,11,15,17,20,23,27,31,33,36, \ldots
$$

$$
a(n) \sim \frac{n}{2} \log _{2}(n)
$$

Conjecture (Meiburg):

Meiburg (cont.)

Meiburg (cont.)

Sum $k * T(n, k)=A 26 I 016$:

$1,6,18,46,107,241,535,1178,2569,5546,11859,25156$, 53058, ...

Divide by $2^{\wedge} \mathrm{n}$: average step size in Meiburg's sequence
What is this sequence? Have 58 terms from Hiroaki Yamanouchi.

$$
a(n) \approx 2^{n}\left(\frac{n}{4}+4.3\right) \quad ? ?
$$

Need analysis of $\mathrm{A} 26 \mathrm{IO} 19, \mathrm{~A} 26 \mathrm{IO} 16$ and related sequences!

Smallest Prime Beginning With the "igits" of Previous Prime

A262283

$$
\begin{aligned}
& 2,3,5,7,11,13,31,17,71,19,97,73, \\
& 37,79,907,701,101, \ldots \\
& s= \text { digits of a(n) without leading digit, } \\
& a(n+1)= \text { smallest missing prime beginning with } s .
\end{aligned}
$$

Show 23 etc never appear!

A. Murthy, F. Adams-Watters, A. Heinz, R. Zumkeller, NJAS
(Binary analog A262374 etc)

Circulant determinant equals number

Generalize: $\quad\left|\begin{array}{lll}2 & 4 & 7 \\ 7 & 2 & 4 \\ 4 & 7 & 2\end{array}\right|=247$.
N. I. Belukhov, 201I.

247, 370, 378, 407, 48I, 518, 592, 629, I360, 3075, 26027, ...

47 terms are known (A2I9324).

OEIS.org

We need editors!

Send me email: njasloane@gmail.com

