%I
%S 1,4,15,55,197,695,2421,8351,28573,97111,328197,1103887,3697709,
%T 12342407,41069973,136292543,451213885,1490644663,4915285029,
%U 16180569199,53184539981,174578141159,572354795445,1874403215135,6132368790877
%N Number of n X 1 0..3 arrays with every repeated value in every row and column one larger mod 4 than the previous repeated value, and upper left element zero.
%H R. H. Hardin, <a href="/A268164/b268164.txt">Table of n, a(n) for n = 1..210</a>
%F Empirical: a(n) = 5*a(n1)  2*a(n2)  12*a(n3).
%F Conjectures from _Colin Barker_, Jan 11 2019: (Start)
%F G.f.: x*(1  x  3*x^2) / ((1  3*x)*(1  2*x  4*x^2)).
%F a(n) = 3^n + (5/811/(8*sqrt(5)))*(1sqrt(5))^n + (1/40)*(1+sqrt(5))^n*(25+11*sqrt(5)).
%F (End)
%e Some solutions for n=6:
%e ..0....0....0....0....0....0....0....0....0....0....0....0....0....0....0....0
%e ..1....3....0....1....3....1....1....0....1....2....3....2....3....2....1....1
%e ..2....0....1....0....2....1....0....1....3....1....2....3....3....3....1....0
%e ..1....2....3....0....1....0....1....2....1....2....2....1....0....1....2....2
%e ..3....0....1....2....3....3....2....1....3....2....1....3....2....1....2....1
%e ..1....3....3....1....2....2....1....1....1....3....0....0....0....2....1....0
%Y Column 1 of A268169.
%K nonn
%O 1,2
%A _R. H. Hardin_, Jan 27 2016
