%I
%S 35,55,77,95,115,119,143,155,161,187,203,209,215,221,235,247,253,275,
%T 287,295,299,319,323,329,335,355,371,377,391,395,403,407,413,415,437,
%U 455,473,475,493,497,515,517,527,533,535,539,551,559,575,581,583,589,611,623
%N Numbers n > 1 such that gcd(n, 2^n  2) = 1.
%C Odd numbers n > 1 such that gcd(n, 2^(n1)1) = 1.
%C Conjecture: this is a subsequence of A121707. Tested for all terms <= 10^5.
%C For n > 1, if gcd(n, 2^n2) = 1, then n is an "antiCarmichael number" defined: p1 does not divide n1 for every prime p dividing n. Generally: for k > 1, gcd(k, b^kb) = 1 for some integer b if and only if k is an "antiCarmichael number".  _Thomas Ordowski_, Aug 14 2018
%H Robert Israel, <a href="/A267999/b267999.txt">Table of n, a(n) for n = 1..10000</a>
%F a(n) = A121707(n) for n < 62. A121707(62) = 697 = A306097(1) is the first term of A121707 not in this sequence.  _M. F. Hasler_, Nov 09 2018
%p select(n > igcd(n, 2&^n2 mod n)=1, [seq(i,i=3..10000, 2)]);
%t Select[Range[2, 768], GCD[#, 2^#  2] == 1 &] (* or *)
%t Select[Range[2, 768], OddQ@ # && GCD[#, 2^(#  1)  1] == 1 &] (* _Michael De Vlieger_, Jan 24 2016 *)
%o (PARI) lista(nn) = for(n=2, nn, if(gcd(n, 2^n  2) == 1, print1(n, ", "))); \\ _Altug Alkan_, Jan 24 2016
%o (MAGMA) [n: n in [2..800]  Gcd(n, 2^n2) eq 1]; // _Vincenzo Librandi_, Jan 24 2016
%Y Cf. A121707.
%Y Cf. A306097 for terms of A121707 not in this sequence A267999.
%K nonn
%O 1,1
%A _Thomas Ordowski_ and _Robert Israel_, Jan 24 2016
