login
T(n,k)=Number of nXk 0..2 arrays with every repeated value in every row and column one larger mod 3 than the previous repeated value, and upper left element zero.
7

%I #4 Jan 22 2016 12:33:28

%S 1,3,3,8,27,8,21,192,192,21,53,1323,3250,1323,53,132,8427,52542,52542,

%T 8427,132,323,52272,755896,1965330,755896,52272,323,783,312987,

%U 10458126,63015581,63015581,10458126,312987,783,1880,1839267,137349742,1919539785

%N T(n,k)=Number of nXk 0..2 arrays with every repeated value in every row and column one larger mod 3 than the previous repeated value, and upper left element zero.

%C Table starts

%C ....1........3............8.............21..............53..............132

%C ....3.......27..........192...........1323............8427............52272

%C ....8......192.........3250..........52542..........755896.........10458126

%C ...21.....1323........52542........1965330........63015581.......1919539785

%C ...53.....8427.......755896.......63015581......4342251846.....280943128130

%C ..132....52272.....10458126.....1919539785....280943128130...38163253126664

%C ..323...312987....137349742....54600088140..16705109186509.4689944257913744

%C ..783..1839267...1754573922..1497422284157.949536358874750

%C .1880.10603200..21788175316.39564274878078

%C .4485.60345675.265455230994

%H R. H. Hardin, <a href="/A267952/b267952.txt">Table of n, a(n) for n = 1..84</a>

%F Empirical for column k:

%F k=1: a(n) = 3*a(n-1) +a(n-2) -6*a(n-3)

%F k=2: a(n) = 10*a(n-1) -8*a(n-2) -163*a(n-3) +306*a(n-4) +684*a(n-5) -1296*a(n-6)

%e Some solutions for n=3 k=4

%e ..0..1..2..2....0..2..1..0....0..2..1..2....0..1..2..2....0..0..1..2

%e ..1..2..0..1....2..1..0..0....0..1..0..2....2..2..0..2....1..0..0..2

%e ..2..1..2..0....2..1..1..2....2..0..0..1....0..0..1..0....2..2..1..0

%K nonn,tabl

%O 1,2

%A _R. H. Hardin_, Jan 22 2016