Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #8 Sep 23 2017 03:18:24
%S 212,-5760,-165852,-10501476,-449827456,-21948311748,-1016699956620,
%T -48023357086272,-2251419462422716,-105852417560435076,
%U -4971310326775823808,-233572686675369390180,-10972461323000994899692,-515480788238950647507456,-24216468853316695676874396
%N Coefficient of x^3 in the minimal polynomial of the continued fraction [1^n,sqrt(2)+sqrt(3),1,1,...], where 1^n means n ones.
%C See A265762 for a guide to related sequences.
%H G. C. Greubel, <a href="/A267062/b267062.txt">Table of n, a(n) for n = 0..595</a>
%H <a href="/index/Rec#order_09">Index entries for linear recurrences with constant coefficients</a>, signature (34, 714, -4641, -12376, 12376, 4641, -714, -34, 1).
%F a(n) = 34*a(n-1) + 714*a(n-2) - 4641*a(n-3) - 12376*a(n-4) + 12376*a(n-5) + 4641*a(n-6) - 714*a(n-7) - 34*a(n-8) + a(n-9).
%F G.f.: (4 (-53 + 3242 x + 30345 x^2 - 58506 x^3 - 383152 x^4 - 61754 x^5 + 46551 x^6 - 1122 x^7 + 9 x^8))/(-1 + 34 x + 714 x^2 - 4641 x^3 - 12376 x^4 + 12376 x^5 + 4641 x^6 - 714 x^7 - 34 x^8 + x^9).
%e Let u = sqrt(2) and v = sqrt(3), and let p(n,x) be the minimal polynomial of the number given by the n-th continued fraction:
%e [u+v,1,1,1,...] has p(0,x) = 49 - 168 x - 50 x^2 + 212 x^3 + 47 x^4 - 68 x^5 - 18 x^6 + 4 x^7 + x^8, so that a(0) = 212.
%e [1,u+v,1,1,1,...] has p(1,x) = 49 - 560 x + 2498 x^2 - 5760 x^3 + 7547 x^4 - 5760 x^5 + 2498 x^6 - 560 x^7 + 49 x^8, so that a(1) = -5760;
%e [1,1,u+v,1,1,1...] has p(2,x) = 25281 - 101124 x + 173262 x^2 - 165852 x^3 + 96847 x^4 - 35252 x^5 + 7790 x^6 - 952 x^7 + 49 x^8, so that a(2) = -165852.
%t u[n_] := Table[1, {k, 1, n}]; t[n_] := Join[u[n], {Sqrt[2] + Sqrt[3]}, {{1}}];
%t f[n_] := FromContinuedFraction[t[n]];
%t t = Table[MinimalPolynomial[f[n], x], {n, 0, 40}];
%t Coefficient[t, x, 0]; (* A266803 *)
%t Coefficient[t, x, 1]; (* A266808 *)
%t Coefficient[t, x, 2]; (* A267061 *)
%t Coefficient[t, x, 3]; (* A267062 *)
%t Coefficient[t, x, 4]; (* A267063 *)
%t Coefficient[t, x, 5]; (* A267064 *)
%t Coefficient[t, x, 6]; (* A267065 *)
%t Coefficient[t, x, 7]; (* A267066 *)
%t Coefficient[t, x, 8]; (* A266803 *)
%Y Cf. A265762, A266803, A266808, A267061, A267063, A267064, A267065, A267066.
%K sign,easy
%O 0,1
%A _Clark Kimberling_, Jan 10 2016