login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Total number of OFF (white) cells after n iterations of the "Rule 15" elementary cellular automaton starting with a single ON (black) cell.
2

%I #22 Apr 15 2019 06:02:06

%S 0,1,5,6,14,15,27,28,44,45,65,66,90,91,119,120,152,153,189,190,230,

%T 231,275,276,324,325,377,378,434,435,495,496,560,561,629,630,702,703,

%U 779,780,860,861,945,946,1034,1035,1127,1128,1224,1225,1325,1326,1430

%N Total number of OFF (white) cells after n iterations of the "Rule 15" elementary cellular automaton starting with a single ON (black) cell.

%D S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 55.

%H Robert Price, <a href="/A266304/b266304.txt">Table of n, a(n) for n = 0..999</a>

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/ElementaryCellularAutomaton.html">Elementary Cellular Automaton</a>

%H <a href="/index/Ce#cell">Index entries for sequences related to cellular automata</a>

%H <a href="https://oeis.org/wiki/Index_to_Elementary_Cellular_Automata">Index to Elementary Cellular Automata</a>

%F Conjectures from _Colin Barker_, Dec 28 2015 and Apr 15 2019: (Start)

%F a(n) = n*(n+(-1)^n+2)/2.

%F a(n) = a(n-1)+2*a(n-2)-2*a(n-3)-a(n-4)+a(n-5) for n>4.

%F G.f.: x*(1+4*x-x^2) / ((1-x)^3*(1+x)^2). (End)

%F a(n) = Sum_{i=1..n} (n-i-1) mod 2. - _Wesley Ivan Hurt_, Sep 15 2017

%t rule=15; rows=20; ca=CellularAutomaton[rule,{{1},0},rows-1,{All,All}]; (* Start with single black cell *) catri=Table[Take[ca[[k]],{rows-k+1,rows+k-1}],{k,1,rows}]; (* Truncated list of each row *) nbc=Table[Total[catri[[k]]],{k,1,rows}]; (* Number of Black cells in stage n *) nwc=Table[Length[catri[[k]]]-nbc[[k]],{k,1,rows}]; (* Number of White cells in stage n *) Table[Total[Take[nwc,k]],{k,1,rows}] (* Number of White cells through stage n *)

%Y Cf. A266300.

%K nonn,easy

%O 0,3

%A _Robert Price_, Dec 26 2015