%I #15 Apr 14 2019 11:53:10
%S 0,3,3,5,5,6,9,6,13,6,17,6,21,6,25,6,29,6,33,6,37,6,41,6,45,6,49,6,53,
%T 6,57,6,61,6,65,6,69,6,73,6,77,6,81,6,85,6,89,6,93,6,97,6,101,6,105,6,
%U 109,6,113,6,117,6,121,6,125,6,129,6,133,6,137,6
%N Number of OFF (white) cells in the n-th iteration of the "Rule 9" elementary cellular automaton starting with a single ON (black) cell.
%D S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 55.
%H Robert Price, <a href="/A266251/b266251.txt">Table of n, a(n) for n = 0..999</a>
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/ElementaryCellularAutomaton.html">Elementary Cellular Automaton</a>
%H <a href="/index/Ce#cell">Index entries for sequences related to cellular automata</a>
%H <a href="https://oeis.org/wiki/Index_to_Elementary_Cellular_Automata">Index to Elementary Cellular Automata</a>
%F Conjectures from _Colin Barker_, Dec 28 2015 and Apr 14 2019: (Start)
%F a(n) = (2*(-1)^n*n+2*n-9*(-1)^n+3)/2 for n>3.
%F a(n) = 2*a(n-2)-a(n-4) for n>7.
%F G.f.: x*(3+3*x-x^2-x^3-x^4+2*x^5-x^6) / ((1-x)^2*(1+x)^2).
%F (End)
%t rule=9; rows=20; ca=CellularAutomaton[rule,{{1},0},rows-1,{All,All}]; (* Start with single black cell *) catri=Table[Take[ca[[k]],{rows-k+1,rows+k-1}],{k,1,rows}]; (* Truncated list of each row *) nbc=Table[Total[catri[[k]]],{k,1,rows}]; (* Number of Black cells in stage n *) Table[Length[catri[[k]]]-nbc[[k]],{k,1,rows}] (* Number of White cells in stage n *)
%Y Cf. A266243.
%K nonn,easy
%O 0,2
%A _Robert Price_, Dec 25 2015
%E Conjectures from _Colin Barker_, Apr 14 2019