login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A265917 a(n) = floor(A070939(n)/A000120(n)) where A070939(n) is the binary length of n and A000120(n) is the binary weight of n. 3
1, 2, 1, 3, 1, 1, 1, 4, 2, 2, 1, 2, 1, 1, 1, 5, 2, 2, 1, 2, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 6, 3, 3, 2, 3, 2, 2, 1, 3, 2, 2, 1, 2, 1, 1, 1, 3, 2, 2, 1, 2, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 7, 3, 3, 2, 3, 2, 2, 1, 3, 2, 2, 1, 2, 1, 1, 1, 3, 2, 2, 1, 2, 1, 1 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

1/a(n) gives a very rough approximation of the density of 1-bits in the binary representation (A007088) of n. This is 1 if more than half of the bits of n are 1. - Antti Karttunen, Dec 19 2015

LINKS

Michael De Vlieger, Table of n, a(n) for n = 1..10000

MATHEMATICA

Table[Floor[IntegerLength[n, 2]/Total@ IntegerDigits[n, 2]], {n, 120}] (* Michael De Vlieger, Dec 21 2015 *)

PROG

(Python)

for n in range(1, 88):

    print(str((len(bin(n))-2) // bin(n).count('1')), end=', ')

(PARI) a(n) = #binary(n)\hammingweight(n); \\ Michel Marcus, Dec 19 2015

CROSSREFS

Cf. A000120, A007088, A070939, A135941, A199238, A265918.

Sequence in context: A344593 A353278 A328917 * A057021 A152443 A119804

Adjacent sequences:  A265914 A265915 A265916 * A265918 A265919 A265920

KEYWORD

nonn,base

AUTHOR

Alex Ratushnyak, Dec 18 2015

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified August 14 18:13 EDT 2022. Contains 356122 sequences. (Running on oeis4.)