%I #8 Nov 17 2022 19:16:55
%S 1,0,1,0,0,1,0,0,0,1,0,0,0,4,1,0,0,0,1,48,1,0,0,0,7,225,584,1,0,0,0,1,
%T 8708,86226,8096,1,0,0,0,19,79026,26269068,25009492,127296,1,0,0,0,1,
%U 2108980,7017652689,117840778362,8099337021,2241856,1,0,0,0,67,28314236
%N T(n,k) = Number of n X k arrays containing k copies of 0..n-1 with no equal horizontal, vertical, diagonal or antidiagonal neighbors and new values introduced sequentially from 0.
%C Table starts
%C .1.......0..........0............0..........0.............0........0..0.0.0.0
%C .1.......0..........0............0..........0.............0........0..0.0.0
%C .1.......0..........0............0..........0.............0........0..0.0
%C .1.......4..........1............7..........1............19........1.67
%C .1......48........225.........8708......79026.......2108980.28314236
%C .1.....584......86226.....26269068.7017652689.2116863604518
%C .1....8096...25009492.117840778362
%C .1..127296.8099337021
%C .1.2241856
%C .1
%H R. H. Hardin, <a href="/A265421/b265421.txt">Table of n, a(n) for n = 1..61</a>
%F Empirical for row n:
%F n=4: a(n) = 1 for odd n; a(n) = 2^(n-2)+3 for even n.
%e Some solutions for n=5, k=4
%e ..0..1..2..0....0..1..2..1....0..1..2..3....0..1..2..3....0..1..2..0
%e ..3..4..3..4....3..4..3..0....2..3..4..0....2..4..0..4....3..4..3..4
%e ..0..2..1..0....1..0..2..4....4..1..2..1....3..1..2..1....0..2..1..2
%e ..3..4..3..2....3..4..3..1....0..3..4..3....4..0..4..0....4..3..4..3
%e ..1..2..1..4....2..0..2..4....4..1..0..2....3..2..3..1....1..2..0..1
%K nonn,tabl
%O 1,14
%A _R. H. Hardin_, Dec 08 2015