%I #12 Dec 06 2015 21:12:24
%S 262,670,1450,1690,2158,4246,19522,18410,34678,36926,118882,146998,
%T 290566,377966,240038,381466,407054,178898,147146,149714,159458,
%U 149378,129242,117958,157822,350014,489878,180770,155930,395686,510386,292426,514294,503114,264490,435670,482882,311674,452774,353570,323374,369638,321926,293726
%N Trajectory of 262 under repeated application of the permutation A264965: a(0) = 262; for n >= 1, a(n) = A264965(a(n-1))
%C The trajectory is probably infinite, not periodic.
%H Antti Karttunen, <a href="/A264972/b264972.txt">Table of n, a(n) for n = 0..1000</a>
%F a(0) = 262; for n >= 1, a(n) = A264965(a(n-1)).
%e a(0) = 262 by definition. Its binary representation is A007088(262) = 100000110. When we reverse the significant prefix (i.e., leave the trailing zeros where they are), we get 386 (A007088(386) = 110000010). 386's ternary representation is A007089(386) = 112022. Reversing the significant prefix (now the whole expansion because no trailing zeros present), we get 220211 (= A007089(670)), thus a(1) = 670.
%o (Scheme, with memoizing macro definec)
%o (definec (A264972 n) (if (zero? n) 262 (A264965 (A264972 (- n 1)))))
%Y Cf. A007088, A007089, A264965, A264969, A264973.
%K nonn,base
%O 0,1
%A _Antti Karttunen_, Dec 06 2015
|