login
Number of (2n+2)X(4+2) 0..1 arrays with each row and column modulo 3 equal to 1, read as a binary number with top and left being the most significant bits.
1

%I #4 Oct 29 2015 08:54:30

%S 528,320148,151930944,68226362100,30224743053408,13344339476900628,

%T 5886544966626029184,2596154092548752142900,1144924797553613766288288,

%U 504914149304802570026241108,222667396652606197017189081024

%N Number of (2n+2)X(4+2) 0..1 arrays with each row and column modulo 3 equal to 1, read as a binary number with top and left being the most significant bits.

%C Column 4 of A263913 (nonzero terms).

%H R. H. Hardin, <a href="/A263909/b263909.txt">Table of n, a(n) for n = 1..105</a>

%F Empirical: a(n) = 630*a(n-1) -94068*a(n-2) +4977882*a(n-3) -113131323*a(n-4) +1123558128*a(n-5) -3996751248*a(n-6)

%e Some solutions for n=2

%e ..0..1..0..0..0..0....0..0..1..0..1..0....0..1..0..0..0..0....0..0..0..1..0..0

%e ..0..0..0..1..1..1....1..1..0..1..0..0....0..0..0..1..1..1....0..0..1..0..1..0

%e ..0..1..1..1..1..1....1..1..1..0..1..0....0..1..0..0..0..0....0..0..0..0..0..1

%e ..1..0..1..0..1..1....0..1..1..0..0..1....0..0..1..1..0..1....1..0..0..0..1..0

%e ..0..1..0..0..1..1....0..1..1..1..1..1....0..0..0..1..1..1....0..0..0..1..1..1

%e ..0..1..1..1..1..1....1..1..0..1..1..1....1..0..0..0..1..0....0..1..0..0..0..0

%Y Cf. A263913.

%K nonn

%O 1,1

%A _R. H. Hardin_, Oct 29 2015