login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = Sum_{k=0..n} (-1)^k*k*Fibonacci(k), where Fibonacci(k) = A000045(k).
1

%I #16 Sep 08 2022 08:46:14

%S 0,-1,1,-5,7,-18,30,-61,107,-199,351,-628,1100,-1929,3349,-5801,9991,

%T -17158,29354,-50085,85215,-144651,244991,-414120,698712,-1176913,

%U 1979305,-3323981,5574727,-9337914,15623286,-26111053,43594835,-72716239,121181919,-201779356

%N a(n) = Sum_{k=0..n} (-1)^k*k*Fibonacci(k), where Fibonacci(k) = A000045(k).

%H Colin Barker, <a href="/A263878/b263878.txt">Table of n, a(n) for n = 0..1000</a>

%H Eric Weisstein's MathWorld, <a href="http://mathworld.wolfram.com/FibonacciNumber.html">Fibonacci Number</a>.

%H <a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (-1,3,1,-3,1).

%F a(n) = (-1)^n*(F(n-3) + n*F(n-1)) - 2, where F(n) = A000045(n).

%F G.f.: x*(x^2+1)/((x-1)*(x^2-x-1)^2).

%F E.g.f.: (exp(x/phi)*(phi^3+x)+exp(-phi*x)*(1/phi^3-x))/sqrt(5)-2*exp(x), where phi=(1+sqrt(5))/2.

%F Recurrences:

%F 6-term, homogeneous, constant coefficients: a(0) = 0, a(1) = -1, a(2) = 1, a(3) = -5, a(4) = 7, a(n) = -a(n-1) + 3*a(n-2) + a(n-3) - 3*a(n-4) + a(n-5).

%F 5-term, non-homogeneous, constant coefficients: a(0) = 0, a(1) = -1, a(2) = 1, a(3) = -5, a(n) = -2*a(n-1) + a(n-2) + 2*a(n-3) - a(n-4) - 2.

%F 4-term, homogeneous: a(0) = 0, a(1) = -1, a(2) = 1, (n-1)*(n-2)*a(n) = (2-n)*a(n-1) + n*(2*n-3)*a(n-2) + n*(1-n)*a(n-3).

%F 3-term, non-homogeneous: a(0) = 0, a(1) = -1, (n^2-1)*a(n) = -(n^2+n+1)*a(n-1) + n*(n+2)*a(n-2) - 2*n*(n-1).

%F 0 = a(n)*(-2*a(n) + 15*a(n+1) - 9*a(n+2) + a(n+3) - 3*a(n+4)) + a(n+1)*(-25*a(n+1) + 15*a(n+2) + 15*a(n+3) + 5*a(n+4)) + a(n+2)*(18*a(n+2) - 29*a(n+3) - 13*a(n+4)) + a(n+3)*(+3*a(n+3) + 7*a(n+4)) + a(n+4)*(2*a(n+4)) for all n in Z. - _Michael Somos_, Nov 02 2015

%e G.f. = - x + x^2 - 5*x^3 + 7*x^4 - 18*x^5 + 30*x^6 - 61*x^7 + 107*x^8 - 199*x^9 + ...

%t Table[Sum[(-1)^k k Fibonacci[k], {k, 0, n}], {n, 0, 20}]

%t Table[(-1)^n (Fibonacci[n-3] + n Fibonacci[n-1]) - 2, {n, 0, 20}]

%o (PARI) concat(0, Vec(x*(x^2+1)/((x-1)*(x^2-x-1)^2) + O(x^40))) \\ _Colin Barker_, Oct 31 2015

%o (PARI) a(n) = (-1)^n*(fibonacci(n-3) + n*fibonacci(n-1)) - 2; \\ _Michel Marcus_, Nov 02 2015

%o (Magma) [(-1)^n*(Fibonacci(n-3) + n*Fibonacci(n-1)) - 2: n in [0..30]]; // _G. C. Greubel_, Jul 30 2018

%Y Cf. A000045, A014286.

%K sign,easy

%O 0,4

%A _Vladimir Reshetnikov_, Oct 28 2015