login
Number of (n+2)X(1+2) arrays of permutations of 0..n*3+5 with each element moved 0 or 1 knight moves and equal numbers of elements advancing and retreating in the array numbered in row major order.
1

%I #7 Nov 10 2015 12:41:58

%S 49,569,4020,38769,355145,3191484,28681889,268042897,2478073156,

%T 22988521889,213950264057,2003893119428,18784066433049,

%U 176529658989177,1662415131728836,15693860548449185,148415319869511929

%N Number of (n+2)X(1+2) arrays of permutations of 0..n*3+5 with each element moved 0 or 1 knight moves and equal numbers of elements advancing and retreating in the array numbered in row major order.

%C Column 1 of A263706.

%H R. H. Hardin, <a href="/A263704/b263704.txt">Table of n, a(n) for n = 1..98</a>

%e Some solutions for n=4

%e ..0..1..3....7..8..2....0..8..2....0..1..2....5..1..2....5..6..2....0..8..3

%e ..2.11..6....3..4..5....3..9.10....3..4.10...10..4..0....3..4..0....2..4..6

%e ..5.12..9...13..0..1...11..7..1....6..7.13...13.14..9....1..7.13....5..7..1

%e ..8.15..4...14.15.11....4..5..6...16..5.11...16..3..6...16.10.11...16.10.11

%e ..7.13.14...17..6..9...12.13.14...17..8.15...12..8..7...12..8.14...17.13.15

%e .10.16.17...10.16.12...15.16.17...14..9.12...15.11.17...15..9.17...14..9.12

%Y Cf. A263706.

%K nonn

%O 1,1

%A _R. H. Hardin_, Oct 24 2015