login
Decimal expansion of the generalized hypergeometric function 3F2(1/2,3/2,3/2; 5/2,5/2;x) at x=1/2.
1

%I #10 Aug 23 2024 04:00:27

%S 1,1,1,3,4,6,3,7,8,0,9,2,9,0,1,7,3,6,6,3,9,7,1,7,6,0,6,2,5,4,4,1,7,1,

%T 9,6,4,6,4,2,5,1,4,2,6,3,5,6,4,0,8,4,3,1,8,0,6,7,4,8,8,8,2,6,1,9,6,9,

%U 6,7,6,4,2,3,9,0,9,8,2,8,8,0,7,2,9,7,7,2,8,0

%N Decimal expansion of the generalized hypergeometric function 3F2(1/2,3/2,3/2; 5/2,5/2;x) at x=1/2.

%H R. J. Mathar, <a href="http://arxiv.org/abs/1207.5845">Yet another table of integrals</a>, arXiv:1207.5845 [math.CA], 2012-2024, Eq. (9.82).

%F Equals 9*(4*Catalan-2+Pi*(log 2 -1))/(4*sqrt(2)) = 9*(A247685 -2 - A000796 * A244009) / A010487.

%e 1.113463780929017366397176...

%p evalf(hypergeom([1/2,3/2,3/2],[5/2,5/2],1/2)) ;

%t RealDigits[9*(4*Catalan - 2 + Pi*(Log[2] - 1))/(4*Sqrt[2]), 10, 120][[1]] (* _Amiram Eldar_, Aug 23 2024 *)

%Y Cf. A000796, A010487, A244009, A247685.

%K nonn,cons

%O 1,4

%A _R. J. Mathar_, Oct 16 2015