The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A263320 Number of regular elements in Z_n[i]. 1

%I

%S 1,3,9,9,25,27,49,33,73,75,121,81,169,147,225,129,289,219,361,225,441,

%T 363,529,297,441,507,649,441,841,675,961,513,1089,867,1225,657,1369,

%U 1083,1521,825,1681,1323,1849,1089

%N Number of regular elements in Z_n[i].

%C A Gaussian integer z is called regular (mod n) if there is a Gaussian integer x such that z^2 * x == z (mod n).

%C From _Robert Israel_, Nov 30 2015: (Start)

%C a(2^k) = 1 + 2^(2k-1) for k >= 1.

%C a(p) = p^2 if p is an odd prime.

%C a(p^k) = 1 - p^(2k-2) + p^(2k) if p is a prime == 3 mod 4.

%C a(p^k) = 1 - 2 p^(k-1) + 2 p^k + p^(2k-2) - 2 p^(2k-1) + p^(2k) if p is a prime == 1 mod 4.(End)

%H Robert Israel, <a href="/A263320/b263320.txt">Table of n, a(n) for n = 1..10000</a>

%H Wikipedia, <a href="http://en.wikipedia.org/wiki/Gaussian_integer">Gaussian Integer</a>

%e a(2) = 3 because the regular elements in Z_2[i] are {0, 1, i}.

%t regularQ[a_, b_, n_] := ! {0} == Union@Flatten@Table[If[Mod[(a + b I) - (a + b I)^2 (x + y I), n] == 0, x + I y, 0], {x, 0, n - 1}, {y, 0, n -1}]; Ho=1; Ho[n_] := Ho[n] = Sum[If[regularQ[a, b, n], 1, 0], {a, 1, n}, {b, 1, n}]; Table[Ho[n], {n, 1, 33}]

%Y Cf. A055653.

%K nonn,mult

%O 1,2

%A _José María Grau Ribas_, Oct 14 2015

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified July 10 15:45 EDT 2020. Contains 335577 sequences. (Running on oeis4.)