%I
%S 0,42,0,228,156,0,3516,1504,522,0,51978,46554,8818,1604,0,760086,
%T 1403180,539152,45174,4866,0,10182786,41783272,32625992,5450977,
%U 231794,14776,0,142451394,1143560054,1955562184,655737184,55298941,1175574,45046,0
%N T(n,k)=Number of (n+3)X(k+3) 0..1 arrays with each row divisible by 13 and column not divisible by 13, read as a binary number with top and left being the most significant bits.
%C Table starts
%C .0.....42.....228......3516.......51978......760086.....10182786...142451394
%C .0....156....1504.....46554.....1403180....41783272...1143560054.33208175412
%C .0....522....8818....539152....32625992..1955562184.107352061052
%C .0...1604...45174...5450977...655737184.78301062222
%C .0...4866..231794..55298941.13204700207
%C .0..14776.1175574.557854814
%C .0..45046.5973996
%C .0.136248
%H R. H. Hardin, <a href="/A263303/b263303.txt">Table of n, a(n) for n = 1..47</a>
%F Empirical for column k:
%F k=1: a(n) = a(n1)
%F k=2: [order 47]
%e Some solutions for n=3 k=4
%e ..0..0..1..1..0..1..0....0..0..1..1..0..1..0....0..0..0..1..1..0..1
%e ..1..0..1..1..0..1..1....0..0..0..0..0..0..0....1..1..0..1..0..0..0
%e ..1..0..0..1..1..1..0....1..1..1..0..1..0..1....0..0..1..1..0..1..0
%e ..0..0..1..1..0..1..0....0..1..1..0..1..0..0....0..0..0..0..0..0..0
%e ..0..0..0..1..1..0..1....1..1..0..1..0..0..0....0..0..0..1..1..0..1
%e ..0..1..1..0..1..0..0....1..0..0..0..0..0..1....0..0..0..1..1..0..1
%K nonn,tabl
%O 1,2
%A _R. H. Hardin_, Oct 13 2015
