This site is supported by donations to The OEIS Foundation.

Thanks to everyone who made a donation during our annual appeal!
To see the list of donors, or make a donation, see the OEIS Foundation home page.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A263006 First member R0(n) of the smallest positive pair (R0(n), S0(n)) for the n-th 1-happy number couple (B(n), C(n)). 2
 1, 2, 1, 3, 1, 18, 1, 4, 2, 1, 3, 7, 5, 3, 70, 1, 1, 1, 6, 3, 2, 32, 1, 3, 4, 23, 7, 9, 182, 11, 2, 1, 5, 99, 1, 29718, 1, 8, 4, 2, 13, 5, 1, 1068, 43, 39, 5, 1, 9, 3, 378, 51, 500, 1, 5, 45, 151, 1, 5604, 1, 10, 5, 2, 4005, 5, 8890182, 1, 7, 3, 776, 16, 35, 6, 277 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS The 1-happy numbers B(n)*C(n) are given in A007969(n) (called rectangular numbers in the Conway paper). B(n) = A191854(n), C(n) = A191855(n). Here the corresponding smallest positive numbers satisfying C(n)*S0(n)^2 - B(n)*R0(n)^2 = +1, n >= 1, are given as R0(n) = a(n) and S0(n) = A263007(n). For a proof of Conway's happy number factorization theorem see the W. Lang link under A007970. In the W. Lang link given in A007969 the first C(n), B(n), S0(n), R0(n) numbers are given in the Table for d(n) = A007969(n), n >= 1. In the Zumkeller link "Initial Happy Factorization Data" given in A191860 the a(n) = R0(n) numbers appear for the t = 1 rows in column v. LINKS J. H. Conway, On Happy Factorizations, J. Integer Sequences, Vol. 1, 1998, #1. FORMULA A191855(n)*A263007(n)^2 - A191854(n)*a(n)^2  = +1, and a(n) with A263007(n) is the smallest positive solution for the given 1-happy couple (A191854(n), A191855(n)). EXAMPLE n = 6: 1-happy number A007969(6) = 13 = 1*13 = A191854(6)*A191855(6). 13*A263007(6)^2 - 1*a(6)^2 = 13*5^2 - 1*18^2 = +1. This is the smallest positive solution for (B, C) = (1, 13). CROSSREFS Cf. A007969, A007970, A191854, A191855, A191860, A263007, A262025, A261250, A263008, A263009. Sequence in context: A057082 A218951 A096642 * A261250 A305354 A227860 Adjacent sequences:  A263003 A263004 A263005 * A263007 A263008 A263009 KEYWORD nonn AUTHOR Wolfdieter Lang, Oct 28 2015 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified January 17 23:15 EST 2019. Contains 319251 sequences. (Running on oeis4.)