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Proposition. Let a, be a sequence of integers with a,, > 1 for n > 2. Then
1 1 1

a9 + as - a4 + -
converges to a real number with the simple continued fraction expansion

the infinite alternating continued fraction a; —
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Proof. Starting from the identity
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a simple induction argument shows that for n > 1 we have
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Letting n — 00, and recalling that infinite simple continued fractions always
converge, completes the proof. (]

Example. Let a,, = n. Then the alternating continued fraction
) 1 1 1
2 + 3 - 4 + -

converges and has the simple continued fraction expansion [0;1,1,2,1,3,4,1,5,6, 1, ...]
as observed by Mohamed Sabba in A262957.





