A supercongruence for A262732

Peter Bala, Sep 242021

The terms of A262732 are defined by

$$
\begin{equation*}
a(n)=\frac{1}{n!} \frac{(5 n)!}{\left(\frac{5 n}{2}\right)!} \frac{\left(\frac{3 n}{2}\right)!}{(3 n)!} \tag{1}
\end{equation*}
$$

It can be shown that

$$
\begin{equation*}
a(n)=\sum_{k=0}^{n}\binom{5 n}{k}\binom{4 n-k-1}{n-k}, \tag{2}
\end{equation*}
$$

for example, by using Zeilberger's algorithm to verify that (1) and (2) satisfy the same linear recurrence

$$
a(n)=20(5 n-1)(5 n-3)(5 n-7)(5 n-9) /(n(3 n-1)(3 n-3)(3 n-5)) a(n-2)
$$

and have the same initial conditions.
Proposition 1. The supercongruence $a(p) \equiv 8\left(\bmod p^{3}\right)$ holds for prime $p \geq 5$.

Proof. Let $p \geq 5$ be prime. We make use of the binomial sum representation (2) for $a(p)$. We rewrite the sum by separating out the first $(k=0)$ summand and last $(k=p)$ summand and adding together the k-th and $(p-k)$-th summands for $1 \leq k \leq \frac{p-1}{2}$ to obtain

$$
a(p)=\binom{4 p-1}{p}+\binom{5 p}{p}+\sum_{k=1}^{\frac{p-1}{2}}(s(k)+s(p-k)),
$$

where

$$
s(k)=\binom{5 p}{k}\binom{4 p-k-1}{p-k} .
$$

By [Mes, equation 35]

$$
\binom{4 p-1}{p}=\frac{3}{4}\binom{4 p}{p} \equiv 3\left(\bmod p^{3}\right) \quad \text { for prime } p \geq 5
$$

and

$$
\binom{5 p}{p} \equiv 5\left(\bmod p^{3}\right) \quad \text { for prime } p \geq 5
$$

Hence

$$
\begin{equation*}
a(p) \equiv 8+\sum_{k=1}^{\frac{p-1}{2}}(s(k)+s(p-k))\left(\bmod p^{3}\right), \quad \text { prime } p \geq 5 \tag{3}
\end{equation*}
$$

To establish the proposition we will show that each summand $s(k)+s(p-k)$ in (3) is divisble by p^{3}. One easily checks that

$$
\begin{equation*}
(p-k)!(s(k)+s(p-k))=\binom{5 p}{k} \frac{(3 p+k-1)!}{(3 p-1)!}\left(\frac{(5 p-k)!}{(4 p+k)!}+\frac{(4 p-k-1)!}{(3 p+k-1)!}\right) \tag{4}
\end{equation*}
$$

We claim that each factor on the right side of (4) is divisible by p. Clearly, the first two factors are divisible by p for k in the summation range $1 \leq k \leq \frac{p-1}{2}$. The third factor is also divisible by p since

$$
\begin{aligned}
\frac{(5 p-k)!}{(4 p+k)!}+\frac{(4 p-k-1)!}{(3 p+k-1)!} & =(4 p+k+1)(4 p+k+2) \cdots(5 p-k)+ \\
& \quad(4 p-k-1)(4 p-k-2) \cdots(3 p+k) \\
\equiv & (k+1)(k+2) \cdots(k+r)+(-1)^{r}(k+1)(k+2) \cdots(k+r)(\bmod p) \\
\equiv & 0(\bmod p)
\end{aligned}
$$

where $r=p-2 k$ is a positive odd integer.

It follows from (4) that p^{3} divides $(p-k)!(s(k)+s(p-k))$ and since $(p-k)$! is clearly not divisible by p for k in the indicated range we see that p^{3} divides $s(k)+s(p-k)$, thus completing the proof of the proposition.

Conjecture. We conjecture that the supercongruences

$$
\begin{equation*}
a\left(n p^{k}\right) \equiv a\left(n p^{k-1}\right)\left(\bmod p^{3 k}\right) \tag{5}
\end{equation*}
$$

hold for prime $p \geq 5$ and all $n, k \in \mathbb{N}$.

We can generalise Proposition 1 by considering sequences $\left(a_{m}(n)\right)_{n \geq 0}$ defined by

$$
\begin{equation*}
a_{m}(n)=\sum_{k=0}^{n}\binom{m n}{k}\binom{(m-1) n-k-1}{n-k} . \tag{6}
\end{equation*}
$$

The present sequence A262732 is the case $m=5$. Then just as in the Proposition one can show that $a_{m}(p) \equiv a_{m}(1)\left(\bmod p^{3}\right)$ for integer m and prime $p \geq 5$. Cases in the OEIS include $\operatorname{A000984}(m=2), \operatorname{A091527}(m=3)$, $\mathrm{A} 001448(m=4), \operatorname{A211419}(m=6), \operatorname{A262733}(m=7)$ and A211421 $(m=8)$. We expect that the supercongruences (5) also hold in these cases.

References

[Mes] R. Mestrovic, Wolstenholme's theorem: Its Generalizations and Extensions in the last hundred and fifty years (1862-2011), arXiv:1111.3057 [math.NT], 2011.

