Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #25 Jun 06 2017 04:21:11
%S 1,2,8,22,68,198,586,1718,5047,14808,43470,127636,374957,1102078,
%T 3241082,9537070,28079357,82718212,243809138,718994032,2121378272,
%U 6262089436,18493519148,54639914652,161503493023,477558890378,1412658185320
%N a(n) = Sum_{k=0..n/2} binomial(n+3,k)*binomial(n+1-k,k+1).
%H G. C. Greubel, <a href="/A262720/b262720.txt">Table of n, a(n) for n = 0..1000</a>
%F G.f.: B'(x)*(1-x/B(x))^2/x^4, where B(x)/x is g.f. of A005043.
%F Recurrence: n*(n+4)*a(n) = (n^2 + 3*n + 6)*a(n-1) + (n+2)*(5*n + 6)*a(n-2) + 3*(n+1)*(n+2)*a(n-3). - _Vaclav Kotesovec_, Sep 29 2015
%F a(n) ~ 3^(n+7/2)/(8*sqrt(Pi*n)). - _Vaclav Kotesovec_, Sep 29 2015
%t Table[Sum[Binomial[n+3,k]*Binomial[n+1-k,k+1], {k,0,n/2}], {n,0,25}] (* _Vaclav Kotesovec_, Sep 29 2015 *)
%o (Maxima)
%o B(x):=(1+x-sqrt(1-2*x-3*x^2))/(2*(1+x));
%o taylor(diff(B(x),x,1)*(1-x/B(x))^2/x^4,x,0,30);
%o (PARI) a(n) = sum(k=0, n/2, (binomial(n+3,k)*binomial(n+1-k,k+1))) ;
%o vector(30, n, a(n-1)) \\ _Altug Alkan_, Sep 28 2015
%Y Cf. A005043.
%K nonn
%O 0,2
%A _Vladimir Kruchinin_, Sep 28 2015