%I #11 Oct 09 2015 17:02:29
%S 1,1,0,1,1,0,1,1,1,0,1,1,2,1,0,1,1,2,3,1,0,1,1,2,4,4,1,0,1,1,2,4,6,5,
%T 1,0,1,1,2,4,6,9,6,1,0,1,1,2,4,6,10,12,7,1,0,1,1,2,4,6,10,14,16,8,1,0,
%U 1,1,2,4,6,10,14,20,20,9,1,0,1,1,2,4,6,10,14,20,26,25,10,1,0
%N Square array read by antidiagonals: number of ways of making change when coins have values 1,2,4,8,16,...
%H Alois P. Heinz, <a href="/A262553/b262553.txt">Antidiagonals n = 0..140, flattened</a>
%H G. Blom and C.-E. Froeberg, <a href="/A002575/a002575.pdf">Om myntvaexling (On money-changing) [Swedish]</a>, Nordisk Matematisk Tidskrift, 10 (1962), 55-69, 103. [Annotated scanned copy]
%e Rows 0,1,2,3,... are:
%e 1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,...
%e 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,...
%e 1,1,2,3,4,5,6,7,8,9,10,11,12,13,...
%e 1,1,2,4,6,9,12,16,20,25,30,36,...
%e 1,1,2,4,6,10,14,20,26,35,44,56,...
%e 1,1,2,4,6,10,14,20,26,36,46,60,...
%e ...
%Y See A181322 for another version of this array.
%Y Row 3 is A002620.
%K nonn,tabl
%O 0,13
%A _N. J. A. Sloane_, Oct 09 2015