login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = A017666(A243512(n)).
2

%I #12 Sep 11 2015 03:36:57

%S 1,2,1,4,9,7,25,8,13,7,17,10,121,27,169,16,29,39,289,12,37,19,41,26,

%T 529,47,19,133,53,34,841,32,61,31,43,93,29,35,73,217,81,63,23,50,21,

%U 43,89,58,2209,75,97,77,101,40,2809,36,109,343,113,74,3481,65,3721

%N a(n) = A017666(A243512(n)).

%C a(n) is the denominator of sigma(m)/m when m is A243512(n), the least integer i such that sigma(i)/i = (k+n)/k for some k.

%H Michel Marcus, <a href="/A262066/b262066.txt">Table of n, a(n) for n = 0..629</a>

%F a(n) = A017665(A243512(n)) - n.

%e For n=2, A243512(2) is 120 with sigma(120)/120=3/1 and 3/1=(2+1)/1 so a(2)=1.

%e For n=3, A243512(3) is 4 with sigma(4)/4=7/4 and 7/4=(4+3)/4 so a(3)=4.

%t f[n_] := Block[{r = DivisorSigma[1, n]/n}, Numerator[r] - Denominator@ r]; Denominator[DivisorSigma[-1, #]] & /@ Table[i = 1; While[f@ i != n, i++]; i, {n, 0, 62}] (* _Michael De Vlieger_, Sep 10 2015 *)

%o (PARI) oksk(n, k) = {my(ab = sigma(k,-1)); numerator(ab) == denominator(ab)+n;}

%o a(n) = {my(k=1); while(!oksk(n, k), k++); denominator(sigma(k,-1));}

%Y Cf. A017665, A017666, A243473, A243512.

%K nonn

%O 0,2

%A _Michel Marcus_, Sep 10 2015