login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A261741 Number of partitions of n where each part i is marked with a word of length i over a septenary alphabet whose letters appear in alphabetical order. 2

%I #11 May 10 2021 06:24:30

%S 1,7,77,623,5355,40299,317905,2323483,17353028,124991685,907465307,

%T 6458846989,46199021001,326573565143,2314422214435,16296707707077,

%U 114891467946017,806991845455033,5672334432498356,39785054428093380,279156880971492454,1956352659297436368

%N Number of partitions of n where each part i is marked with a word of length i over a septenary alphabet whose letters appear in alphabetical order.

%H Alois P. Heinz, <a href="/A261741/b261741.txt">Table of n, a(n) for n = 0..1000</a>

%F a(n) ~ c * 7^n, where c = Product_{k>=2} 1/(1 - binomial(k+6,6)/7^k) = 3.519268129363442517546929108933080435102442778133731795486515352... - _Vaclav Kotesovec_, Oct 11 2017, updated May 10 2021

%F G.f.: Product_{k>=1} 1 / (1 - binomial(k+6,6)*x^k). - _Ilya Gutkovskiy_, May 10 2021

%p b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,

%p b(n, i-1)+`if`(i>n, 0, b(n-i, i)*binomial(i+6, 6))))

%p end:

%p a:= n-> b(n$2):

%p seq(a(n), n=0..30);

%Y Column k=7 of A261718.

%K nonn

%O 0,2

%A _Alois P. Heinz_, Aug 30 2015

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified July 13 14:24 EDT 2024. Contains 374284 sequences. (Running on oeis4.)