|
|
A261546
|
|
Numbers k such that the five numbers k^2+1, (k+1)^2+1, ..., (k+4)^2+1 are all semiprime.
|
|
1
|
|
|
48, 58, 1688, 2948, 28338, 36998, 38648, 96248, 100308, 133458, 136798, 187538, 207088, 224508, 253808, 309738, 375348, 545048, 598348, 607688, 659548, 672398, 793958, 1055648, 1055688, 1140008, 1270408, 1317808, 1388398, 1399098, 1529488, 1597008, 1655338
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
a(n) == 8 (mod 10).
|
|
LINKS
|
|
|
EXAMPLE
|
48 is in the sequence because of these five semiprimes:
48^2+1 = 2305 = 5*461;
49^2+1 = 2402 = 2*1201;
50^2+1 = 2501 = 41*61;
51^2+1 = 2602 = 2*1301;
52^2+1 = 2705 = 5*541.
|
|
MAPLE
|
with(numtheory):
n:=5:
for k from 1 to 10^6 do:
jj:=0:
for m from 0 to n-1 do:
x:=(k+m)^2+1:d0:=bigomega(x):
if d0=2
then
jj:=jj+1:
else
fi:
od:
if jj=n
then
printf(`%d, `, k):
else
fi:
od:
|
|
MATHEMATICA
|
PrimeFactorExponentsAdded[n_]:=Plus@@Flatten[Table[#[[2]], {1}]&/@FactorInteger[n]]; Select[Range[2 10^5], PrimeFactorExponentsAdded[#^2+1] == PrimeFactorExponentsAdded[#^2 + 2 # + 2]== PrimeFactorExponentsAdded[#^2 + 4 # + 5]== PrimeFactorExponentsAdded[#^2 + 6 # + 10]== PrimeFactorExponentsAdded[#^2 + 8 # + 17] == 2 &] (* Vincenzo Librandi, Aug 24 2015 *)
|
|
PROG
|
(PARI) has(n) = bigomega(n^2+1)==2;
isok(n) = has(n) && has(n+1) && has(n+2) && has(n+3) && has(n+4); \\ Michel Marcus, Aug 24 2015
(PARI)
a261546() = {
nterm = 0;
for (i = 0, 10^9,
if (isprime(20*i*i + 32*i + 13) &&
isprime(50*i*i + 90*i + 41) &&
isprime(50*i*i + 110*i + 61) &&
isprime(20*i*i + 48*i + 29) &&
bigomega(100*i*i + 200*i + 101) == 2,
nterm += 1;
print(nterm, " ", 10 * i + 8);
);
);
(PARI) issemi(n)=forprime(p=2, 97, if(n%p==0, return(isprime(n/p)))); bigomega(n)==2
list(lim)=my(v=List()); forstep(k=48, lim, [10, 30, 10], if(issemi(k^2+1) && issemi((k+1)^2+1) && issemi((k+3)^2+1) && issemi((k+4)^2+1) && issemi((k+2)^2+1), listput(v, k))); Vec(v) \\ Charles R Greathouse IV, Jul 06 2017
(Magma) IsSemiprime:=func< n | &+[k[2]: k in Factorization(n)] eq 2 >; [ n: n in [1..3*10^5] | IsSemiprime(n^2+1) and IsSemiprime(n^2+2*n+2)and IsSemiprime(n^2+4*n+5)and IsSemiprime(n^2+6*n+10)and IsSemiprime(n^2+8*n+17)]; // Vincenzo Librandi, Aug 24 2015
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn,less
|
|
AUTHOR
|
|
|
EXTENSIONS
|
|
|
STATUS
|
approved
|
|
|
|