%I #28 Dec 12 2022 12:54:48
%S 7,22,44,114,158,276,344,510,818,932,1338,1644,1808,2166,2762,3428,
%T 3662,4428,4974,5258,6168,6810,7838,9320,10104,10508,11346,11774,
%U 12660,16016,17034,18638,19184,22062,22652,24498,26412,27726,29762
%N a(n) = prime(n+1)^2 - prime(n).
%F a(n) = A036689(n+1) + A001223(n). - _Michel Marcus_, Aug 21 2015 [Corrected by _Georg Fischer_, Dec 12 2022]
%F a(n) ~ n^2 log^2 n. - _Charles R Greathouse IV_, Aug 22 2015
%e a(2) = 5^2 - 3 = 22.
%t Table[Prime[n + 1]^2 - Prime[n], {n, 60}] (* _Vincenzo Librandi_, Aug 20 2015 *)
%o (PARI) first(m)=vector(m,i,prime(i+1)^2 - prime(i)) \\ _Anders Hellström_, Aug 20 2015
%o (PARI) a(n,p=prime(n)); nextprime(p+1)^2-p \\ _Charles R Greathouse IV_, Aug 22 2015
%o (PARI) first(n)=my(v=primes(n+1)); vector(n,i,v[i+1]^2-v[i]) \\ _Charles R Greathouse IV_, Aug 22 2015
%o (Magma) [NthPrime(n+1)^2-NthPrime(n): n in [1.. 70]]; // _Vincenzo Librandi_, Aug 20 2015
%Y Cf. A036689, A001223, A069482, A129701.
%K nonn,easy
%O 1,1
%A _Altug Alkan_, Aug 20 2015