login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Pentatope of coefficients in expansion of (1 + 2*x + 2*y + 2*z)^n.
2

%I #43 Oct 31 2015 15:32:11

%S 1,1,2,2,2,1,4,4,4,4,8,8,4,8,4,1,6,6,6,12,24,24,12,24,12,8,24,24,24,

%T 48,24,8,24,24,8,1,8,8,8,24,48,48,24,48,24,32,96,96,96,192,96,32,96,

%U 96,32,16,64,64,96,192,96,64,192,192,64,16,64,96,64,96,1,10,10,10,40,80,80,40,80,40,80,240,240,240,480,240,80,240,240,80,80,320,320,480,960,480,320,960,960,320,80,320,480,320,80,32,160,160,320,640,320,320,960,960,320,160,640,960,640,160,32,160,320,320,160,32

%N Pentatope of coefficients in expansion of (1 + 2*x + 2*y + 2*z)^n.

%C T(n,i,j,k) is the number of lattice paths from (0,0,0,0) to (n,i,j,k) with steps (1,0,0,0) and two kinds of steps (1,1,0,0), (1,1,1,0) and (1,1,1,1).

%C The sum of the numbers in each cell of the pentatope is 7^n (A000420).

%F T(i+1,j,k,l) = 2*T(i,j-1,k-1,l-1) + 2*T(i,j-1,k-1,l) + 2*T(i,j-1,k,l) + T(i,j,k,l); T(i,j,k,-1)=0, ...; T(0,0,0,0)=1.

%F T(n,i,j,k) = 2^i*binomial(n,i)*binomial(i,j)*binomial(j,k). - _Dimitri Boscainos_, Aug 21 2015

%e The 5th slice (n=4) of this 4D simplex starts at a(35). It comprises a 3D tetrahedron of 35 terms whose sum is 2401. It is organized as follows:

%e .

%e . 1

%e .

%e . 8

%e . 8 8

%e .

%e . 24

%e . 48 48

%e . 24 48 24

%e .

%e . 32

%e . 96 96

%e . 96 192 96

%e . 32 96 96 32

%e .

%e . 16

%e . 64 64

%e . 96 192 96

%e . 64 192 192 64

%e . 16 64 96 64 16

%p p:= proc(i, j, k, l) option remember;

%p if l<0 or j<0 or i<0 or i>l or j>i or k<0 or k>j then 0

%p elif {i, j, k, l}={0} then 1

%p else p(i, j, k, l-1) +2*p(i-1, j, k, l-1) +2*p(i-1, j-1, k, l-1)+2*p(i-1, j-1, k-1, l-1)

%p fi

%p end:

%p seq(seq(seq(seq(p(i, j, k, l), k=0..j), j=0..i), i=0..l), l=0..5);

%p # Adapted from _Alois P. Heinz_'s Maple program for A261356

%o (PARI) lista(nn) = {for (n=0, nn, for (i=0, n, for (j=0, i, for (k=0, j, print1(2^i*binomial(n,i)*binomial(i,j)*binomial(j,k), ", ")););););} \\ _Michel Marcus_, Oct 07 2015

%Y Cf. A000420, A189225, A261358, A261359.

%K nonn,tabf,walk,less

%O 0,3

%A _Dimitri Boscainos_, Aug 16 2015